Estimation of longitudinal aerodynamic parameters using recurrent neural network

被引:2
|
作者
Verma, H. O. [1 ]
Peyada, N. K. [2 ]
机构
[1] Centurion Univ Technol & Management, Bhubaneswar, Odisha, India
[2] Indian Inst Technol Kharagpur, Kharagpur, W Bengal, India
来源
AERONAUTICAL JOURNAL | 2023年 / 127卷 / 1308期
关键词
Recurrent neural network; Parameter estimation; Aerodynamic model; Stability and control derivatives; HIGH ANGLES; SYSTEM-IDENTIFICATION; AIRCRAFT;
D O I
10.1017/aer.2022.39
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The aerodynamic modelling is one of the challenging tasks that is generally established using the results of the computational fluid dynamic software and wind tunnel analysis performed either on the scaled model or the prototype. In order to improve the confidence of the estimates, the conventional parameter estimation methods such as equation error method (EEM) and output error method (OEM) are more often applied to extract the aircraft's stability and control derivatives from its respective flight test data. The quality of the estimates gets influenced due to the presence of the measurement and process noises in the flight test data. With the advancement in the machine learning algorithms, the data driven methods have got more attention in the modelling of a system based on the input-output measurements and also, in the identification of the system/model parameters. The research article investigates the longitudinal stability and control derivatives of the aerodynamic models by using an integrated optimisation algorithm based on a recurrent neural network. The flight test data of Hansa-3 and HFB 320 aircraft were used as case studies to see the efficacy of the parameter estimation algorithm and further, the confidence of the estimates were demonstrated in terms of the standard deviations. Finally, the simulated variables obtained using the estimates demonstrate a qualitative estimation in the presence of the noise.
引用
收藏
页码:255 / 267
页数:13
相关论文
共 50 条
  • [21] NEURAL NETWORK FOR ESTIMATION OF PARAMETERS OF SINEWAVE
    OSOWSKI, S
    ELECTRONICS LETTERS, 1990, 26 (11) : 689 - 691
  • [22] NEURAL NETWORK FOR ESTIMATION OF PARAMETERS OF SINEWAVE
    KARRAS, DA
    VAROUFAKIS, SJ
    ELECTRONICS LETTERS, 1992, 28 (18) : 1750 - 1751
  • [23] Recurrent neural networks for aerodynamic parameter estimation with Lyapunov stability analysis
    George, Sara Mohan
    Selvi, S. S.
    Raol, J. R.
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [24] Laryngeal Pressure Estimation With a Recurrent Neural Network
    Gomez, Pablo
    Schuetzenberger, Anne
    Semmler, Marion
    Doellinger, Michael
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2019, 7
  • [25] Survey on a Neural Network for Non Linear Estimation of Aerodynamic Angles
    Lerro, Angelo
    Battipede, Manuela
    Gili, Piero
    Brandl, Alberto
    PROCEEDINGS OF THE 2017 INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2017, : 929 - 935
  • [26] Estimation of the Interaction Parameters of Liquid Fe using Neural Network Computation
    Nakamoto, Masashi
    Tanaka, Toshihiro
    ISIJ INTERNATIONAL, 2020, 60 (10) : 2134 - 2140
  • [27] ESTIMATION OF SOIL MOISTURE DYNAMICS USING A RECURRENT DYNAMIC LEARNING NEURAL NETWORK
    Tzeng, Y. C.
    Fan, K. T.
    Lin, C. Y.
    Lee, Y. J.
    Chen, K. S.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1251 - 1253
  • [28] Learning A Recurrent Neural Network for State Estimation using Filtered Sensory Data
    Hammam, Ahmed M.
    Abdelhady, Mohamed A.
    Shehata, Omar M.
    Morgan, Elsayed, I
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1448 - 1453
  • [29] Remote Atrial Fibrillation Burden Estimation Using Deep Recurrent Neural Network
    Chocron, Armand
    Oster, Julien
    Biton, Shany
    Mandel, Franck
    Elbaz, Meyer
    Zeevi, Yehoshua Y.
    Behar, Joachim A.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (08) : 2447 - 2455
  • [30] Recurrent Neural Network Channel Estimation Using Measured Massive MIMO Data
    Faghani, Termeh
    Shojaeifard, Arman
    Wong, Kai-Kit
    Aghvami, A. Hamid
    2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2020,