Estimation of longitudinal aerodynamic parameters using recurrent neural network

被引:2
|
作者
Verma, H. O. [1 ]
Peyada, N. K. [2 ]
机构
[1] Centurion Univ Technol & Management, Bhubaneswar, Odisha, India
[2] Indian Inst Technol Kharagpur, Kharagpur, W Bengal, India
来源
AERONAUTICAL JOURNAL | 2023年 / 127卷 / 1308期
关键词
Recurrent neural network; Parameter estimation; Aerodynamic model; Stability and control derivatives; HIGH ANGLES; SYSTEM-IDENTIFICATION; AIRCRAFT;
D O I
10.1017/aer.2022.39
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The aerodynamic modelling is one of the challenging tasks that is generally established using the results of the computational fluid dynamic software and wind tunnel analysis performed either on the scaled model or the prototype. In order to improve the confidence of the estimates, the conventional parameter estimation methods such as equation error method (EEM) and output error method (OEM) are more often applied to extract the aircraft's stability and control derivatives from its respective flight test data. The quality of the estimates gets influenced due to the presence of the measurement and process noises in the flight test data. With the advancement in the machine learning algorithms, the data driven methods have got more attention in the modelling of a system based on the input-output measurements and also, in the identification of the system/model parameters. The research article investigates the longitudinal stability and control derivatives of the aerodynamic models by using an integrated optimisation algorithm based on a recurrent neural network. The flight test data of Hansa-3 and HFB 320 aircraft were used as case studies to see the efficacy of the parameter estimation algorithm and further, the confidence of the estimates were demonstrated in terms of the standard deviations. Finally, the simulated variables obtained using the estimates demonstrate a qualitative estimation in the presence of the noise.
引用
收藏
页码:255 / 267
页数:13
相关论文
共 50 条
  • [1] Estimation of equivalent aerodynamic parameters of an aeroelastic aircraft using neural network
    Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016, India
    J Inst Eng India: Aerosp Eng J, 2009, MAY (3-9):
  • [2] Estimation of Guidance Law Parameters Using Recurrent Neural Network
    Kang T.Y.
    Jeon H.-M.
    Yang H.-Y.
    Park J.
    Ryoo C.-K.
    Journal of Institute of Control, Robotics and Systems, 2023, 29 (08) : 599 - 606
  • [3] Flight Modes and Aerodynamic Parameters Identification Using Convolutional Recurrent Neural Network
    Eggers, Elliott
    Xu, Yunjun
    AIAA SCITECH 2024 FORUM, 2024,
  • [4] Bispectrum estimation using a recurrent neural network
    Ogawa, Takehiko
    Kosugi, Yukio
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 2000, 83 (10): : 91 - 99
  • [5] Bispectrum estimation using a recurrent neural network
    Ogawa, T
    Kosugi, Y
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (10): : 91 - 99
  • [6] Identify some aerodynamic parameters of a airplane using the spiking neural network
    Nguyen Duc Thanh
    Le Tran Thang
    Vuong Anh Trung
    Nguyen Quang Vinh
    VIETNAM JOURNAL OF EARTH SCIENCES, 2020, 42 (03): : 276 - 287
  • [7] WIND POWER ESTIMATION USING RECURRENT NEURAL NETWORK TECHNIQUE
    Olaofe, Z. O.
    Folly, K. A.
    2012 IEEE POWER ENGINEERING SOCIETY CONFERENCE AND EXPOSITION IN AFRICA (POWERAFRICA), 2012,
  • [8] SOH Estimation of Batteries using Lithium-Ion Internal Parameters with Convolution Neural Network and Gated Recurrent
    Park H.-Y.
    Lim H.-S.
    Lee K.-B.
    Transactions of the Korean Institute of Electrical Engineers, 2023, 72 (03): : 387 - 394
  • [9] Parameters Estimation of PV Models Using Artificial Neural Network
    Hussein Abdellatif
    Md Ismail Hossain
    Mohammad A. Abido
    Arabian Journal for Science and Engineering, 2022, 47 : 14947 - 14956
  • [10] Linear Blur Parameters Estimation Using a Convolutional Neural Network
    Nasonov, A., V
    Nasonova, A. A.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (03) : 611 - 615