Dispersive Estimates for Linearized Water Wave-Type Equations in Rd

被引:0
|
作者
Deneke, Tilahun [1 ]
Dufera, Tamirat T. T. [2 ]
Tesfahun, Achenef [2 ]
机构
[1] Nazarbayev Univ, Dept Math, Qabanbai Batyr Ave 53, Nur Sultan 010000, Kazakhstan
[2] Adama Univ Sci & Technol, Dept Math, Adama, Ethiopia
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 11期
关键词
WELL-POSEDNESS; WHITHAM; SYSTEM;
D O I
10.1007/s00023-023-01322-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a L-x(1)(R-d)-L-x(infinity)(R-d) decay estimate of order O ( t(-d/2)) for the linear propagators [GRAPHICS] . with a loss of 3d/4 or d/4-derivatives in the case ss = 0 or ss = 1, respectively. These linear propagators are known to be associated with the linearized water wave equations, where the parameter ss measures surface tension effects. As an application, we prove low regularity well-posedness for a Whitham-Boussinesq-type system in R-d, d >= 2. This generalizes a recent result by Dinvay, Selberg and the third author where they proved low regularity well-posedness in R and R-2.
引用
收藏
页码:3741 / 3761
页数:21
相关论文
共 50 条