. The present paper addresses the convergence of the implicit Marker-and-Cell scheme for time-dependent Navier-Stokes equations with variable density and density-dependent viscosity and forcing term. A priori estimates on the unknowns are obtained, and thanks to a topological degree argument, they lead to the existence of an approximate solution at each time step. Then, by compactness arguments relying on these same estimates, we obtain the convergence (up to the extraction of a subsequence), when the space and time steps tend to zero, of the numerical solutions to a limit; this latter is shown to be a weak solution to the continuous problem by passing to the limit in the scheme.
机构:
Univ Massachusetts Dartmouth, Dept Math, 285 Old Westport Rd, N Dartmouth, MA 02747 USAUniv Massachusetts Dartmouth, Dept Math, 285 Old Westport Rd, N Dartmouth, MA 02747 USA
Chen, Yanlai
Ji, Lijie
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R ChinaUniv Massachusetts Dartmouth, Dept Math, 285 Old Westport Rd, N Dartmouth, MA 02747 USA
Ji, Lijie
Wang, Zhu
论文数: 0引用数: 0
h-index: 0
机构:
Univ South Carolina, Dept Math, Columbia, SC 29208 USAUniv Massachusetts Dartmouth, Dept Math, 285 Old Westport Rd, N Dartmouth, MA 02747 USA
机构:
Univ Paris Est, Batiment P3,Etage 4,Bur 409,61 Ave Gen Gaulle, F-94010 Creteil, FranceUniv Paris Est, Batiment P3,Etage 4,Bur 409,61 Ave Gen Gaulle, F-94010 Creteil, France
Danchin, Raphael
Mucha, Piotr Boguslaw
论文数: 0引用数: 0
h-index: 0
机构:
Uniwersytet Warszawski, Inst Matemat & Stosowanej Mech, Ul Banacha 2, PL-02097 Warsaw, PolandUniv Paris Est, Batiment P3,Etage 4,Bur 409,61 Ave Gen Gaulle, F-94010 Creteil, France