SHAPE OPTIMIZATION OF THE STOKES EIGENVALUE PROBLEM

被引:1
|
作者
Li, Jiajie [1 ]
Zhu, Shengfeng [1 ,2 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Pure Math & Math Practice, Shanghai 200241, Peoples R China
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2023年 / 45卷 / 02期
基金
中国国家自然科学基金;
关键词
shape optimization; Stokes eigenvalue; distributed shape gradient; mixed finite element; error estimate; FINITE-ELEMENT-METHOD; APPROXIMATION; STABILITY; GRADIENTS;
D O I
10.1137/21M1451543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider solving the Stokes eigenvalue optimization problem. Distributed and boundary types of Eulerian derivatives are derived from shape calculus. A priori error estimates for finite element discretizations of both shape gradients are shown. The approximate distributed shape gradient has better convergence and is used in numerical algorithms. We propose a single -grid algorithm and a two-grid algorithm for Stokes eigenvalue optimization. Numerical results are presented to verify theory and show effectiveness and efficiency of the algorithms proposed.
引用
收藏
页码:A798 / A828
页数:31
相关论文
共 50 条