Quasi-abelian group as automorphism group of Riemann surfaces

被引:0
|
作者
Hidalgo, Ruben A. [1 ]
Montilla, Yerika L. Marin [1 ]
Quispe, Saul [1 ]
机构
[1] Univ La Frontera, Dept Matemat & Estadist, Temuco, Chile
关键词
30F10; 14H37; 14H57; 20H10; 30F50; CYCLIC GROUPS; VARIETIES;
D O I
10.1007/s00229-024-01552-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Conformal/anticonformal actions of the quasi-abelian group QAn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QA_{n}$$\end{document} of order 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>n$$\end{document}, for n >= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 4$$\end{document}, on closed Riemann surfaces, pseudo-real Riemann surfaces and closed Klein surfaces are considered. We obtain several consequences, such as the solution of the minimum genus problem for the QAn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QA_n$$\end{document}-actions, and for each of these actions, we study the topological rigidity action problem. In the case of pseudo-real Riemann surfaces, attention was typically restricted to group actions that admit anticonformal elements. In this paper, we consider two cases: either QAn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$QA_n$$\end{document} has anticonformal elements or only contains conformal elements.
引用
收藏
页码:591 / 616
页数:26
相关论文
共 50 条
  • [31] Finding representatives for the orbits under the automorphism group of a bounded Abelian group
    Schwachhöfer, M
    Stroppel, M
    JOURNAL OF ALGEBRA, 1999, 211 (01) : 225 - 239
  • [32] What does the automorphism group of a free abelian group A know about A?
    Tolstykh, V
    Logic and Its Applications, 2005, 380 : 283 - 296
  • [33] GEOMETRICALLY SIMPLE QUASI-ABELIAN VARIETIES
    Abe, Yukitaka
    KYUSHU JOURNAL OF MATHEMATICS, 2018, 72 (02) : 269 - 275
  • [34] On Quasi-Abelian Complementary Dual Codes
    Jitman, Somphong
    Palines, Herbert S.
    dela Cruz, Romar B.
    CODING THEORY AND APPLICATIONS, ICMCTA 2017, 2017, 10495 : 192 - 206
  • [35] The concatenated structure of quasi-abelian codes
    Borello, Martino
    Guneri, Cem
    Sacikara, Elif
    Sole, Patrick
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (11) : 2647 - 2661
  • [36] Koszul Monoids in Quasi-abelian Categories
    Savage, Rhiannon
    APPLIED CATEGORICAL STRUCTURES, 2023, 31 (06)
  • [37] Torsion Pairs and Quasi-abelian Categories
    Tattar, Aran
    ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (06) : 1557 - 1581
  • [38] Torsion Pairs and Quasi-abelian Categories
    Aran Tattar
    Algebras and Representation Theory, 2021, 24 : 1557 - 1581
  • [39] The concatenated structure of quasi-abelian codes
    Martino Borello
    Cem Güneri
    Elif Saçıkara
    Patrick Solé
    Designs, Codes and Cryptography, 2022, 90 : 2647 - 2661
  • [40] Coble surfaces with finite automorphism group
    Kondo, Shigeyuki
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 829 - 864