Results for Nonlinear Diffusion Equations with Stochastic Resetting

被引:1
|
作者
Lenzi, Ervin K. [1 ,2 ]
Zola, Rafael S. [3 ]
Rosseto, Michely P. [1 ]
Mendes, Renio S. [4 ]
Ribeiro, Haroldo V. [4 ]
da Silva, Luciano R. [2 ,5 ]
Evangelista, Luiz R. [4 ,6 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Fis, BR-84030900 Ponta Grossa, PR, Brazil
[2] Natl Inst Sci & Technol Complex Syst, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
[3] Univ Tecnol Fed Parana, Dept Fis, BR-86812460 Apucarana, PR, Brazil
[4] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, PR, Brazil
[5] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072900 Natal, RN, Brazil
[6] CNR, Ist Sistemi Complessi ISC, Via Taurini 19, I-100185 Rome, Italy
关键词
Tsallis entropy; q-exponentials; anomalous diffusion; Levy distributions; ANOMALOUS DIFFUSION; FOUNDATION;
D O I
10.3390/e25121647
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we investigate a nonlinear diffusion process in which particles stochastically reset to their initial positions at a constant rate. The nonlinear diffusion process is modeled using the porous media equation and its extensions, which are nonlinear diffusion equations. We use analytical and numerical calculations to obtain and interpret the probability distribution of the position of the particles and the mean square displacement. These results are further compared and shown to agree with the results of numerical simulations. Our findings show that a system of this kind exhibits non-Gaussian distributions, transient anomalous diffusion (subdiffusion and superdiffusion), and stationary states that simultaneously depend on the nonlinearity and resetting rate.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Diffusion-Advection Equations on a Comb: Resetting and Random Search
    Sandev, Trifce
    Domazetoski, Viktor
    Iomin, Alexander
    Kocarev, Ljupco
    MATHEMATICS, 2021, 9 (03) : 1 - 24
  • [32] Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd
    Chen, Le
    Hu, Yaozhong
    Nualart, David
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (12) : 5073 - 5112
  • [33] Stochastic resetting with refractory periods: pathway formulation and exact results
    Garcia-Valladares, G.
    Gupta, D.
    Prados, A.
    Plata, C. A.
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [34] Exact Results on Some Nonlinear Laguerre-type Diffusion Equations
    Garra, Roberto
    Tomovski, Zivorad
    MATHEMATICAL MODELLING AND ANALYSIS, 2021, 26 (01) : 72 - 81
  • [35] New results on group classification of nonlinear diffusion-convection equations
    Popovych, RO
    Ivanova, NM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (30): : 7547 - 7565
  • [36] Stochastic nonlinear Schrodinger equations
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 136 : 168 - 194
  • [37] NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS
    OGAWARA, M
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1971, 52 (03) : 214 - &
  • [38] Stochastic nonlinear beam equations
    Zdzisław Brzeźniak
    Bohdan Maslowski
    Jan Seidler
    Probability Theory and Related Fields, 2005, 132 : 119 - 149
  • [39] Stochastic nonlinear beam equations
    Brzezniak, Z
    Maslowski, B
    Seidler, J
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (01) : 119 - 149
  • [40] Nonlinear stochastic wave equations
    Oberguggenberger, M
    Russo, F
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) : 71 - 83