Results for Nonlinear Diffusion Equations with Stochastic Resetting

被引:1
|
作者
Lenzi, Ervin K. [1 ,2 ]
Zola, Rafael S. [3 ]
Rosseto, Michely P. [1 ]
Mendes, Renio S. [4 ]
Ribeiro, Haroldo V. [4 ]
da Silva, Luciano R. [2 ,5 ]
Evangelista, Luiz R. [4 ,6 ]
机构
[1] Univ Estadual Ponta Grossa, Dept Fis, BR-84030900 Ponta Grossa, PR, Brazil
[2] Natl Inst Sci & Technol Complex Syst, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil
[3] Univ Tecnol Fed Parana, Dept Fis, BR-86812460 Apucarana, PR, Brazil
[4] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, PR, Brazil
[5] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072900 Natal, RN, Brazil
[6] CNR, Ist Sistemi Complessi ISC, Via Taurini 19, I-100185 Rome, Italy
关键词
Tsallis entropy; q-exponentials; anomalous diffusion; Levy distributions; ANOMALOUS DIFFUSION; FOUNDATION;
D O I
10.3390/e25121647
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we investigate a nonlinear diffusion process in which particles stochastically reset to their initial positions at a constant rate. The nonlinear diffusion process is modeled using the porous media equation and its extensions, which are nonlinear diffusion equations. We use analytical and numerical calculations to obtain and interpret the probability distribution of the position of the particles and the mean square displacement. These results are further compared and shown to agree with the results of numerical simulations. Our findings show that a system of this kind exhibits non-Gaussian distributions, transient anomalous diffusion (subdiffusion and superdiffusion), and stationary states that simultaneously depend on the nonlinearity and resetting rate.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Diffusion with Stochastic Resetting
    Evans, Martin R.
    Majumdar, Satya N.
    PHYSICAL REVIEW LETTERS, 2011, 106 (16)
  • [2] Heterogeneous diffusion with stochastic resetting
    Sandev, Trifce
    Domazetoski, Viktor
    Kocarev, Ljupco
    Metzler, Ralf
    Chechkin, Aleksei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (07)
  • [3] STOCHASTIC NONLINEAR DIFFUSION EQUATIONS WITH SINGULAR DIFFUSIVITY
    Barbu, Viorel
    Da Prato, Giuseppe
    Roeckner, Michael
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) : 1106 - 1120
  • [4] Local time of diffusion with stochastic resetting
    Pal, Arnab
    Chatterjee, Rakesh
    Reuveni, Shlomi
    Kundu, Anupam
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (26)
  • [5] Diffusion in a potential landscape with stochastic resetting
    Pal, Arnab
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [6] Experimental Realization of Diffusion with Stochastic Resetting
    Tal-Friedman, Ofir
    Pal, Arnab
    Sekhon, Amandeep
    Reuveni, Shlomi
    Roichman, Yael
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (17): : 7350 - 7355
  • [7] INTEGRAL RESULTS FOR NONLINEAR DIFFUSION-EQUATIONS
    KING, JR
    JOURNAL OF ENGINEERING MATHEMATICS, 1991, 25 (02) : 191 - 205
  • [8] Dichotomous flow with thermal diffusion and stochastic resetting
    Capala, Karol
    Dybiec, Bartlomiej
    Gudowska-Nowak, Ewa
    CHAOS, 2021, 31 (06)
  • [9] Autocorrelation functions and ergodicity in diffusion with stochastic resetting
    Stojkoski, Viktor
    Sandev, Trifce
    Kocarev, Ljupco
    Pal, Arnab
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (10)
  • [10] Shear-driven diffusion with stochastic resetting
    Abdoli, Iman
    Olsen, Kristian Stolevik
    Loewen, Hartmut
    PHYSICS OF FLUIDS, 2024, 36 (11)