MRGCN: cancer subtyping with multi-reconstruction graph convolutional network using full and partial multi-omics dataset

被引:8
|
作者
Yang, Bo [1 ,2 ,4 ]
Yang, Yan [1 ]
Wang, Meng [1 ]
Su, Xueping [3 ]
机构
[1] Xian Polytech Univ, Sch Comp Sci, Shaanxi Key Lab Clothing Intelligence, Xian 710048, Peoples R China
[2] Univ Toronto, Donnelly Ctr Cellular & Biomol Res, Toronto, ON M5S 3E1, Canada
[3] Xian Polytech Univ, Sch Elect & Informat, Xian 710048, Peoples R China
[4] Xian Polytech Univ, Sch Comp Sci, Shaanxi Key Lab Clothing Intelligence, 19 Jinhua South Rd, Xian 710048, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
LATENT VARIABLE MODEL; INTEGRATION; BREAST;
D O I
10.1093/bioinformatics/btad353
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Cancer is a molecular complex and heterogeneous disease. Each type of cancer is usually composed of several subtypes with different treatment responses and clinical outcomes. Therefore, subtyping is a crucial step in cancer diagnosis and therapy. The rapid advances in high-throughput sequencing technologies provide an increasing amount of multi-omics data, which benefits our understanding of cancer genetic architecture, and yet poses new challenges in multi-omics data integration. Results: We propose a graph convolutional network model, called MRGCN for multi-omics data integrative representation. MRGCN simultaneously encodes and reconstructs multiple omics expression and similarity relationships into a shared latent embedding space. In addition, MRGCN adopts an indicator matrix to denote the situation of missing values in partial omics, so that the full and partial multi-omics processing procedures are combined in a unified framework. Experimental results on 11 multi-omics datasets show that cancer subtypes obtained by MRGCN with superior enriched clinical parameters and log-rank test P-values in survival analysis over many typical integrative methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Multi-omics analysis of cancer using mass spectrometry
    Matsumoto, Masaki
    CANCER SCIENCE, 2022, 113 : 624 - 624
  • [42] MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
    Wang, Tongxin
    Shao, Wei
    Huang, Zhi
    Tang, Haixu
    Zhang, Jie
    Ding, Zhengming
    Huang, Kun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [43] Network reconstruction for trans acting genetic loci using multi-omics data and prior information
    Johann S. Hawe
    Ashis Saha
    Melanie Waldenberger
    Sonja Kunze
    Simone Wahl
    Martina Müller-Nurasyid
    Holger Prokisch
    Harald Grallert
    Christian Herder
    Annette Peters
    Konstantin Strauch
    Fabian J. Theis
    Christian Gieger
    John Chambers
    Alexis Battle
    Matthias Heinig
    Genome Medicine, 14
  • [44] Network reconstruction for trans acting genetic loci using multi-omics data and prior information
    Hawe, Johann S.
    Saha, Ashis
    Waldenberger, Melanie
    Kunze, Sonja
    Wahl, Simone
    Mueller-Nurasyid, Martina
    Prokisch, Holger
    Grallert, Harald
    Herder, Christian
    Peters, Annette
    Strauch, Konstantin
    Theis, Fabian J.
    Gieger, Christian
    Chambers, John
    Battle, Alexis
    Heinig, Matthias
    GENOME MEDICINE, 2022, 14 (01)
  • [45] MoCLIM: Towards Accurate Cancer Subtyping via Multi-Omics Contrastive Learning with Omics-Inference Modeling
    Yang, Ziwei
    Chen, Zheng
    Matsubara, Yasuko
    Sakurai, Yasushi
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2895 - 2905
  • [46] MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
    Tongxin Wang
    Wei Shao
    Zhi Huang
    Haixu Tang
    Jie Zhang
    Zhengming Ding
    Kun Huang
    Nature Communications, 12
  • [47] MOGAT: A Multi-Omics Integration Framework Using Graph Attention Networks for Cancer Subtype Prediction
    Tanvir, Raihanul Bari
    Islam, Md Mezbahul
    Sobhan, Masrur
    Luo, Dongsheng
    Mondal, Ananda Mohan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (05)
  • [48] Network analysis with multi-omics data using graphical LASSO
    Park, Jaehyun
    Won, Sungho
    GENETIC EPIDEMIOLOGY, 2020, 44 (05) : 509 - 509
  • [49] Integration of a multi-omics stem cell differentiation dataset using a dynamical model
    van den Berg, Patrick R.
    Berenger-Currias, Noemie M. L. P.
    Budnik, Bogdan
    Slavov, Nikolai
    Semrau, Stefan
    PLOS GENETICS, 2023, 19 (05):
  • [50] MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model
    Zhao, Wenyi
    Gu, Xun
    Chen, Shuqing
    Wu, Jian
    Zhou, Zhan
    BIOINFORMATICS, 2022, 38 (21) : 4901 - 4907