Some L2(R)-norm and L1(R)-norm decay estimates for Cauchy Timoshenko type systems with a frictional damping or an infinite memory

被引:1
|
作者
Guesmia, Aissa [1 ]
Messaoudi, Salim [2 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, 3 Rue Augustin Fresnel,BP 45112, F-57073 Metz 03, France
[2] Univ Sharjah, Coll Sci, Dept Math, POB 2727, Sharjah, U Arab Emirates
关键词
Timoshenko beam; Frictional damping; Infinite memory; Asymptotic behavior; L2(R)-norm andL1(R)-norm decay; estimates; Fourier analysis; REGULARITY-LOSS TYPE; PROPERTY; EXISTENCE; RATES;
D O I
10.1016/j.jmaa.2023.127385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider two Timoshenko-type systems in the whole line R with a frictional damping or an infinite memory acting on the equation that describes the shear angle displacements. We prove some L2(R)-norm and L1(R)-norm decay estimates of solutions and their higher-order derivatives with respect to the space variable. Thanks to interpolation inequalities, these L2(R)-norm and L1(R)-norm decay estimates lead to similar ones in the Lp(R)-norm, for any p is an element of]1, 2[?]2, +infinity].(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] WAVELET-BASED SEAMLESS IMAGE STITCHING UNDER L1 AND L2 NORM
    Cheng Guangquan
    Zhu Xianqiang
    Huang Jincai
    Liu Zhong
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 728 - 733
  • [22] Nonparametric density estimates consistent of the order of n−1/2 in the L1–norm
    Václav Kůs
    Metrika, 2004, 60 : 1 - 14
  • [23] Some New Estimates of the Fourier Transform in L2(R)
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (09) : 1231 - 1238
  • [24] Robust landmark-based image registration using l1 and l2 norm regularizations
    Yang, Xuan
    Wang, Bo
    Li, Yan-Ran
    He, Tiancheng
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 425 - 428
  • [25] 3-D inversion of magnetic data based on the L1–L2 norm regularization
    Mitsuru Utsugi
    Earth, Planets and Space, 71
  • [26] Surface-related multiple adaptive subtraction method based on L1/L2 norm
    Jing, Hongliang
    Shi, Ying
    Li, Ying
    Song, Yuandong
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2015, 50 (04): : 619 - 625
  • [27] Nuclear Magnetic Resonance Spectrum Inversion Based on the Residual Hybrid l1/l2 Norm
    Zou, Youlong
    Xie, Ranhong
    Liu, Mi
    Guo, Jiangfeng
    Jin, Guowen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) : 1194 - 1198
  • [28] A MIXED L2 - L1 NORM MINIMIZATION PROCEDURE FOR THE DATA PROCESSING OF GROUND PENETRATING RADAR
    Ambrosanio, Michele
    Schirinzi, Gilda
    Pascazio, Vito
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3747 - 3750
  • [29] Series AC Arc Fault Detection Method Based on L2/L1 Norm and Classification Algorithm
    Dai, Wenxin
    Zhou, Xue
    Sun, Zhigang
    Miao, Qiang
    Zhai, Guofu
    IEEE SENSORS JOURNAL, 2024, 24 (10) : 16661 - 16672
  • [30] Homogenization of the elliptic Dirichlet problem: Error estimates in the (L2 → H1)-norm
    M. A. Pakhnin
    T. A. Suslina
    Functional Analysis and Its Applications, 2012, 46 : 155 - 159