Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks

被引:17
|
作者
Van Gompel, Jonas [1 ]
Spina, Domenico [1 ]
Develder, Chris [1 ]
机构
[1] Univ Ghent, Dept Informat Technol, IDLab, imec, Technol Pk Zwijnaarde 126, B-9052 Ghent, Belgium
关键词
Photovoltaics; Predictive maintenance; Fault detection; Graph neural network; Time series classification; VOLTAGE; FOREST;
D O I
10.1016/j.energy.2022.126444
中图分类号
O414.1 [热力学];
学科分类号
摘要
The energy losses and costs associated with faults in photovoltaic (PV) systems significantly limit the efficiency and reliability of solar power. Since existing methods for automatic fault diagnosis require expensive sensors, they are only cost-effective for large-scale systems. To address these drawbacks, we propose a fault diagnosis model based on graph neural networks (GNNs), which monitors a group of PV systems by comparing their current and voltage production over the last 24 h. This methodology allows for monitoring PV systems without sensors, as hourly measurements of the produced current and voltage are obtained via the PV systems' inverters. Comprehensive experiments are conducted by simulating 6 different PV systems in Colorado using 6 years of real weather measurements. Despite large variations in number of modules, module type, orientation, location, etc., the GNN can accurately detect and identify early occurrences of 6 common faults. Specifically, the GNN reaches 84.6% +/- 2.1% accuracy without weather data and 87.5% +/- 1.6% when satellite weather estimates are provided, significantly outperforming two state-of-the-art PV fault diagnosis models. Moreover, the results suggest that GNN can generalize to PV systems it was not trained on and retains high accuracy when multiple PV systems are simultaneously affected by faults.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Cost-effective metro networks
    Braun, RP
    2003 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2003, : 610 - 611
  • [32] Fault Diagnosis of Industrial Systems with Bayesian Networks and Neural Networks
    Garza Castanon, Luis E.
    Nieto Gonzalez, Juan Pablo
    Garza Castanon, Mauricio A.
    Morales-Menendez, Ruben
    MICAI 2008: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, 5317 : 998 - +
  • [33] Temporal convolutional networks for fault diagnosis of photovoltaic systems using satellite and inverter measurements
    Van Gompel, Jonas
    Spina, Domenico
    Develder, Chris
    BUILDSYS'21: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2021, : 180 - 183
  • [34] DESIGN EFFECTIVE COST-EFFECTIVE SYSTEMS
    LEE, CM
    WATER & WASTES ENGINEERING, 1978, 15 (07): : 66 - &
  • [35] A cost-effective fault management system for distribution systems with distributed generators
    Teng, Jen-Hao
    Luan, Shang-Wen
    Huang, Wei-Hao
    Lee, Dong-Jing
    Huang, Yung-Fu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 65 : 357 - 366
  • [36] FAULT DETECTION AND DIAGNOSIS OF PHOTOVOLTAIC SYSTEM BASED ON NEURAL NETWORKS APPROACH
    Ben Rahmoune M.
    Iratni A.
    Amari A.S.
    Hafaifa A.
    Colak I.
    Diagnostyka, 2023, 24 (03):
  • [37] Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review
    Li, B.
    Delpha, C.
    Diallo, D.
    Migan-Dubois, A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138
  • [38] Fault diagnosis of aeroengine using neural networks
    Lu, P.-J., 2000, Aeronautical and Astronautical Soc. of the Rep. of China (32):
  • [39] Fault diagnosis for a MSF using neural networks
    Tarifa, EE
    Humana, D
    Franco, S
    Martínez, SL
    Núñez, AF
    Scenna, NJ
    DESALINATION, 2003, 152 (1-3) : 215 - 222
  • [40] Fault Diagnosis Using Wavelet Neural Networks
    Liu Qipeng
    Yu Xiaoling
    Feng Quanke
    Neural Processing Letters, 2003, 18 (2) : 115 - 123