Possibilities of Determining Quantitative and Qualitative Characteristics of Mixed Forest Stands Using Sentinel-1 Imagery

被引:0
|
作者
Sidorenkov, V. M. [1 ]
Kositsyn, V. N. [2 ]
Badak, L. A. [3 ]
Astapov, D. O. [1 ]
Achikolova, I. S. [1 ]
机构
[1] All Russian Res Inst Silviculture & Mechanizat For, Pushchino, Russia
[2] Fed Forestry Agcy, Moscow, Russia
[3] Russian Space Syst, Moscow, Russia
关键词
radar survey; Sentinel-1; forest attributes; forest density; standing volume; remote sensing;
D O I
10.1134/S0001433823090190
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents studies on using Sentinel-1 imagery data to determine the attributes of mixed forest stands. The fieldwork is carried out in Kostroma, Vologda, and Arkhangelsk oblasts and the Udmurt Republic. The study reveals that quantitative and qualitative forest characteristics correlate with radar survey parameters; the value of this correlation is identified. The results make it possible to zone a study area according to the standing volume and forest density.
引用
收藏
页码:1126 / 1136
页数:11
相关论文
共 50 条
  • [1] Possibilities of Determining Quantitative and Qualitative Characteristics of Mixed Forest Stands Using Sentinel-1 Imagery
    V. M. Sidorenkov
    V. N. Kositsyn
    L. A. Badak
    D. O. Astapov
    I. S. Achikolova
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2023, 59 : 1126 - 1136
  • [2] Monitoring of coastal landslides using Sentinel-1 imagery
    Atanasova-Zlatareva, Mila S.
    Nikolov, Hristo S.
    Ivanov, Anton
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVIII, 2022, 12267
  • [3] Examining the effectiveness of Sentinel-1 and 2 imagery for commercial forest species mapping
    Mngadi, Mthembeni
    Odindi, John
    Peerbhay, Kabir
    Mutanga, Onisimo
    [J]. GEOCARTO INTERNATIONAL, 2021, 36 (01) : 1 - 12
  • [4] AUTOMATED SEA ICE CLASSIFICATION USING SENTINEL-1 IMAGERY
    Park, Jeong-Won
    Korosov, Anton
    Babiker, Mohamed
    Kim, Hyun-Cheol
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4008 - 4011
  • [5] Determining basic forest stand characteristics using airborne laser scanning in mixed forest stands of Central Europe
    Smrecek, Robert
    Michnova, Zuzana
    Sackov, Ivan
    Danihelova, Zuzana
    Levicka, Martina
    Tucek, Jan
    [J]. IFOREST-BIOGEOSCIENCES AND FORESTRY, 2018, 11 : 181 - 188
  • [6] Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology
    Frison, Pierre-Louis
    Fruneau, Benedicte
    Kmiha, Syrine
    Soudani, Kamel
    Dufrene, Eric
    Thuy Le Toan
    Koleck, Thierry
    Villard, Ludovic
    Mougin, Eric
    Rudant, Jean-Paul
    [J]. REMOTE SENSING, 2018, 10 (12)
  • [7] Cloud Approach to Automated Crop Classification Using Sentinel-1 Imagery
    Shelestov, Andrii
    Lavreniuk, Mykola
    Vasiliev, Vladimir
    Shumilo, Leonid
    Kolotii, Andrii
    Yailymov, Bohdan
    Kussul, Nataliia
    Yailymova, Hanna
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (03) : 572 - 582
  • [8] Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning
    Zhao, Feng
    Sun, Rui
    Zhong, Liheng
    Meng, Ran
    Huang, Chengquan
    Zeng, Xiaoxi
    Wang, Mengyu
    Li, Yaxin
    Wang, Ziyang
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 269
  • [9] MARITIME PRODUCTS USING TERRASAR-X and SENTINEL-1 IMAGERY
    Lehner, S.
    Tings, B.
    [J]. 36TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2015, 47 (W3): : 967 - 973
  • [10] Green Infrastructure Mapping in Urban Areas Using Sentinel-1 Imagery
    Gasparovic, Mateo
    Dobrinic, Dino
    [J]. CROATIAN JOURNAL OF FOREST ENGINEERING, 2021, 42 (02) : 336 - 355