A mechanistic explanation of shrinkage porosity in laser powder bed fusion additive manufacturing

被引:15
|
作者
Templeton, William Frieden [1 ]
Hinnebusch, Shawn [2 ]
Strayer, Seth T. [2 ]
To, Albert C. [2 ]
Pistorius, P. Chris [3 ]
Narra, Sneha Prabha [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[2] Univ Pittsburgh, Dept Mech & Mat Sci, 3700 OHara St, Pittsburgh, PA 15261 USA
[3] Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
关键词
Laser powder bed fusion; Alloy; 718; Additive manufacturing; Shrinkage porosity; Defect mitigation; SOLIDIFICATION;
D O I
10.1016/j.actamat.2023.119632
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work focuses on the occurrence of shrinkage porosity and its manifestation in Alloy 718 during laserpowder bed fusion (PBF-LB) processing. Shrinkage porosity is a common defect in metal castings that degrades part performance. In traditional metal castings, the Niyama criterion is a reliable heuristic for predicting the formation of shrinkage porosity. However, the Niyama criterion's applicability in the PBF-LB process remains unexplored, and there is no known and evaluated heuristic to predict shrinkage porosity in the PBFLB manufactured parts. This work employs microstructure characterization and an analytical heat transfer model to develop a mechanistic explanation for the formation of shrinkage porosity in the PBF-LB process. The results show that the Niyama criterion could not effectively predict the occurrence of shrinkage porosity. Further, the formation of shrinkage porosity is primarily driven by secondary dendrite arm growth in the solidifying microstructure, where the transition to cellular growth at high cooling rates during solidification mitigates porosity by removing locations for pore formation. This means a heuristic based on solidification cooling rate could reliably predict the occurrence of shrinkage porosity. For practical use, shrinkage porosity process maps are presented for use in process design and control to directly aid shrinkage porosity mitigation in process planning. The process -shrinkage porosity relationship results also indicate that trends in PBF-LB manufacturing toward higher deposition temperatures and higher throughput are likely to aggravate the conditions for shrinkage porosity formation and further elevate the importance of the mitigation strategies presented in this work.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive manufacturing
    Rui Liu
    Sen Liu
    Xiaoli Zhang
    The International Journal of Advanced Manufacturing Technology, 2021, 113 : 1943 - 1958
  • [12] Laser Powder Bed Fusion Additive Manufacturing of Maraging Steel: A Review
    Kizhakkinan, Umesh
    Seetharaman, Sankaranarayanan
    Raghavan, Nagarajan
    Rosen, David W.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (11):
  • [13] Laser melting modes in metal powder bed fusion additive manufacturing
    Zhao, Cang
    Shi, Bo
    Chen, Shuailei
    Du, Dong
    Sun, Tao
    Simonds, Brian J.
    Fezzaa, Kamel
    Rollett, Anthony D.
    REVIEWS OF MODERN PHYSICS, 2022, 94 (04)
  • [14] Additive Manufacturing Process Simulation of Laser Powder Bed Fusion and Benchmarks
    Ghabbour, Mina S.
    Qu, Xueyong
    Rome, Jacob I.
    SAMPE JOURNAL, 2024, 60 (04) : 26 - 31
  • [15] Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
    Lopez, Felipe
    Witherell, Paul
    Lane, Brandon
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [16] Additive manufacturing of ceramics via the laser powder bed fusion process
    Ullah, Abid
    Shah, Mussadiq
    Ali, Zulfiqar
    Asami, Karim
    Rehman, Asif Ur
    Emmelmann, Claus
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025,
  • [17] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J. P.
    LaLonde, A. D.
    Ma, J.
    MATERIALS & DESIGN, 2020, 193
  • [18] Pulsed laser powder bed fusion additive manufacturing of A356
    Chou, S. C.
    Trask, M.
    Danovitch, J.
    Wang, X. L.
    Choi, J. P.
    Brochu, M.
    MATERIALS CHARACTERIZATION, 2018, 143 : 27 - 33
  • [19] Processing parameters in laser powder bed fusion metal additive manufacturing
    Oliveira, J.P.
    LaLonde, A.D.
    Ma, J.
    Materials and Design, 2020, 193
  • [20] Influences of Powder Packing Density in Laser Powder Bed Fusion Metal Additive Manufacturing
    Zhang Peng
    Zhang Shaoming
    Bi Zhongnan
    Tan Zhen
    Wang Rui
    Wang Rui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)