Antioxidant and anticancer activities of peanut (Arachis hypogaea L.) skin ultrasound extract

被引:2
|
作者
Hammad, K. S. M. [1 ]
El-Roby, A. M. [1 ]
Galal, S. M. [1 ]
机构
[1] Cairo Univ, Dept Food Sci, Fac Agr, Giza 12613, Egypt
关键词
Anticancer; Antioxidant; Peanut skin; Polyphenols; Sunflower oil; Ultrasound-assisted extraction; PHENOLIC-COMPOUNDS;
D O I
10.3989/gya.0990221
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
This study evaluates the effect of ultrasound-assisted extraction on the extractability of polyphenols from peanut skins (PS) and their antioxidant, and anticancer activities. The extraction was performed with solid/solvent ratios of 1:20 and 1:30 (w/v) at ultrasound intensity ranging from 5.8 to 15.4 W/cm(2) for different extraction times (10, 20, 30 and 40 min). The highest polyphenol yield was 167.46 mg GAE/g dried PS. The most abundant polyphenols were catechin, syringic acid, and vanillic acid. The PS ultrasound extract (PSUE) increased the oxidative stability of sunflower oil by four times its initial level. PSUE possessed high inhibitory activity against MCF-7, HepG-2, HCT-116, and PC-3 cancer cell lines, with IC50 ranging from 1.85 +/- 0.13 to 6.1 +/- 0.43 mu g/ml. In addition, the cytotoxicity of PSUE was examined on HFB4 human normal melanocytes using the MTT assay. These results suggest that PSUE can be used as a natural antioxidant and anticancer agent.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Physiological responses of peanut (Arachis hypogaea L.) cultivars to water deficit stress: status of oxidative stress and antioxidant enzyme activities
    Chakraborty, Koushik
    Singh, Amrit L.
    Kalariya, Kuldeep A.
    Goswami, Nisha
    Zala, Pratap V.
    ACTA BOTANICA CROATICA, 2015, 74 (01) : 123 - 142
  • [32] PHOTOCONTROL OF PEANUT (ARACHIS HYPOGAEA L.) OVULE DEVELOPMENT IN VITRO
    Thompson, L. K.
    Ziv, M.
    Deitzer, G. F.
    PLANT PHYSIOLOGY, 1984, 75 : 79 - 79
  • [33] Purification and characterization of a chitinase from peanut (Arachis hypogaea L.)
    Wang, Shaoyun
    Shao, Biao
    Ye, Xiuyun
    Rao, Pingfran
    JOURNAL OF FOOD BIOCHEMISTRY, 2008, 32 (01) : 32 - 45
  • [34] Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.)
    Guohao He
    Ronghua Meng
    Melanie Newman
    Guoqing Gao
    Roy N Pittman
    CS Prakash
    BMC Plant Biology, 3 (1)
  • [35] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Ruan, Jian
    Guo, Feng
    Wang, Yingying
    Li, Xinguo
    Wan, Shubo
    Shan, Lei
    Peng, Zhenying
    BMC PLANT BIOLOGY, 2018, 18
  • [36] Transcriptome analysis of alternative splicing in peanut (Arachis hypogaea L.)
    Jian Ruan
    Feng Guo
    Yingying Wang
    Xinguo Li
    Shubo Wan
    Lei Shan
    Zhenying Peng
    BMC Plant Biology, 18
  • [37] Physicochemical properties of new peanut (Arachis hypogaea L.) varieties
    Zahran, Hamdy A.
    Tawfeuk, Hesham Z.
    OCL-OILSEEDS AND FATS CROPS AND LIPIDS, 2019, 26
  • [38] Uptake and partitioning of cadmium by cultivars of peanut (Arachis hypogaea L.)
    McLaughlin, MJ
    Bell, MJ
    Wright, GC
    Cozens, GD
    PLANT AND SOIL, 2000, 222 (1-2) : 51 - 58
  • [39] Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis
    Yin, Dongmei
    Wang, Yun
    Zhang, Xingguo
    Ma, Xingli
    He, Xiaoyan
    Zhang, Jianhang
    SCIENTIFIC REPORTS, 2017, 7
  • [40] Distribution of allergen composition in peanut (Arachis hypogaea L.) and wild progenitor (Arachis) species
    Kang, Il-Ho
    Gallo, Maria
    Tillman, Barry L.
    CROP SCIENCE, 2007, 47 (03) : 997 - 1003