Monolayer graphene on submicron LiNbO3 thin film waveguide: Carrier properties and their effect on waveguide transmission

被引:0
|
作者
Liu, Yifan [1 ]
Lu, Fei [1 ]
Liu, Chang [2 ]
Li, Qingyun [3 ]
Li, Yu [4 ,5 ]
Xu, Yuanfeng [2 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Shandong, Peoples R China
[2] Shandong Jianzhu Univ, Sch Sci, Jinan 250101, Shandong, Peoples R China
[3] Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R China
[4] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Opt & Photon Device, Jinan 250358, Peoples R China
[5] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Opt & Photon Device, Jinan 250358, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene; Waveguide transmission; Carrier properties; LITHIUM-NIOBATE; RAMAN-SPECTROSCOPY; MODULATORS; SILICON;
D O I
10.1016/j.apsusc.2023.159018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photonic devices are currently advancing towards high integration and miniaturization, necessitating the utilization of low-dimensional materials as pivotal components for the next generation of optoelectronic modulators. In this work, we conduct an in-depth exploration of the waveguide properties of submicron ferroelectric material LiNbO3 when integrated with graphene, utilizing a prism-coupled total reflection system. Our experimental findings underscore the significant enhancements in effective index and coupling efficiency upon graphene coverage, and the calculations exhibit the accumulate of electrons in graphene surface. Such distribution of charge and the spontaneous polarization of LiNbO3 itself not only endows graphene with n-type doping characteristics, but also optimizes the overall waveguide performance. Concurrently, the waveguide transmission stability under visible light is verified. The pronounced modifications in effective index and coupling efficiency demonstrate the feasibility of graphene as an electrode, thereby laying the foundation for future investigations into high-speed optical modulators based on the graphene-LiNbO3 platform.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide
    Lee, YL
    Jung, C
    Noh, YC
    Ko, DK
    Lee, J
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 44 (02) : 267 - 270
  • [22] Epitaxial ZnO/LiNbO3/ZnO stacked layer waveguide for application to thin-film Pockels sensors
    Akazawa, Housei
    Fukuda, Hiroshi
    AIP ADVANCES, 2015, 5 (05):
  • [23] FABRICATION OF MgO:LiNbO3 THIN FILM RIDGE WAVEGUIDE BY SURFACE-ACTIVATED BONDING AND ION SLICING
    Tanaka, Keisuke
    Suhara, Toshiaki
    2013 18TH MICROOPTICS CONFERENCE (MOC), 2013,
  • [24] WAVEGUIDE DEFLECTOR IN LITHIUM-NIOBATE (LINBO3)
    TARDIEU, A
    CLAIR, JJ
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 396 : 50 - 52
  • [25] Bent waveguide with a high index reflector on LiNbO3
    Ruei-Chang Lu
    Yu-Pin Liao
    Way-Seen Wang
    Optical and Quantum Electronics, 2000, 32 : 313 - 325
  • [26] Optical waveguide engraving in a LiNbO3 crystal fiber
    Ruso, A.
    Aillerie, M.
    Fressengeas, N.
    Ferriol, M.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 95 (03): : 573 - 578
  • [27] Er-doped LiNbO3 waveguide lasers
    Sohler, W
    Suche, H
    RARE-EARTH-DOPED DEVICES, 1997, 2996 : 154 - 165
  • [28] Bent waveguide with a high index reflector on LiNbO3
    Lu, RC
    Liao, YP
    Wang, WS
    OPTICAL AND QUANTUM ELECTRONICS, 2000, 32 (03) : 313 - 325
  • [29] THz Radiation in the Tapered LiNbO3 Ribbon Waveguide
    Nikoghosyan, A. S.
    Roeser, H. P.
    Martirosyan, R. M.
    Chamberlain, J. M.
    Hakobyan, H. S.
    Bohr, A.
    Haslam, D. T.
    Lopez, J. S.
    Stepper, M.
    2013 38TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2013,
  • [30] CPW to Rectangular Waveguide Transition on an LiNbO3 Substrate
    Shireen, Rownak
    Shi, Sbouyuan
    Yao, Peng
    Schuetz, Christopher A.
    Macario, Julien
    Prather, Dennis W.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (06) : 1494 - 1499