Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser

被引:1
|
作者
Juncheng, E. [1 ]
Stransky, Michal [1 ,2 ]
Shen, Zhou [3 ]
Jurek, Zoltan [4 ,5 ]
Fortmann-Grote, Carsten [1 ]
Bean, Richard [1 ]
Santra, Robin [4 ,5 ,6 ]
Ziaja, Beata [2 ,4 ]
Mancuso, Adrian P. [1 ,7 ,8 ]
机构
[1] European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany
[2] Polish Acad Sci, Inst Nucl Phys, Radzikowskiego 152, PL-31342 Krakow, Poland
[3] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci, Notkestr 85, D-22607 Hamburg, Germany
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, Dept Phys, Notkestr 9-11, D-22607 Hamburg, Germany
[7] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England
[8] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, Melbourne, Vic 3086, Australia
基金
欧盟地平线“2020”;
关键词
SIMULATION;
D O I
10.1038/s41598-023-43298-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The noise caused by sample heterogeneity (including sample solvent) has been identified as one of the determinant factors for a successful X-ray single-particle imaging experiment. It influences both the radiation damage process that occurs during illumination as well as the scattering patterns captured by the detector. Here, we investigate the impact of water layer thickness and radiation damage on orientation recovery from diffraction patterns of the nitrogenase iron protein. Orientation recovery is a critical step for single-particle imaging. It enables to sort a set of diffraction patterns scattered by identical particles placed at unknown orientations and assemble them into a 3D reciprocal space volume. The recovery quality is characterized by a "disconcurrence" metric. Our results show that while a water layer mitigates protein damage, the noise generated by the scattering from it can introduce challenges for orientation recovery and is anticipated to cause problems in the phase retrieval process to extract the desired protein structure. Compared to these disadvantageous effects due to the thick water layer, the effects of radiation damage on the orientation recovery are relatively small. Therefore, minimizing the amount of residual sample solvent should be considered a crucial step in improving the fidelity and resolution of X-ray single-particle imaging experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Water layer and radiation damage effects on the orientation recovery of proteins in single-particle imaging at an X-ray free-electron laser
    Juncheng E
    Michal Stransky
    Zhou Shen
    Zoltan Jurek
    Carsten Fortmann-Grote
    Richard Bean
    Robin Santra
    Beata Ziaja
    Adrian P. Mancuso
    Scientific Reports, 13
  • [2] Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser
    Juncheng E
    Michal Stransky
    Zoltan Jurek
    Carsten Fortmann-Grote
    Libor Juha
    Robin Santra
    Beata Ziaja
    Adrian P. Mancuso
    Scientific Reports, 11
  • [3] Effects of radiation damage and inelastic scattering on single-particle imaging of hydrated proteins with an X-ray Free-Electron Laser
    Juncheng, E.
    Stransky, Michal
    Jurek, Zoltan
    Fortmann-Grote, Carsten
    Juha, Libor
    Santra, Robin
    Ziaja, Beata
    Mancuso, Adrian P.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Simulations of single-particle imaging of hydrated proteins with x-ray free-electron lasers
    Fortmann-Grote, C.
    Bielecki, J.
    Jurek, Z.
    Santra, R.
    Ziaja-Motyka, B.
    Mancuso, A. P.
    ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY OPTICS IV, 2017, 10388
  • [5] Single-particle imaging without symmetry constraints at an X-ray free-electron laser
    Rose, Max
    Bobkov, Sergey
    Ayyer, Kartik
    Kurta, Ruslan P.
    Dzhigaev, Dmitry
    Kim, Young Yong
    Morgan, Andrew J.
    Yoon, Chun Hong
    Westphal, Daniel
    Bielecki, Johan
    Sellberg, Jonas A.
    Williams, Garth
    Maia, Filipe R. N. C.
    Yefanov, Olexander M.
    Ilyin, Vyacheslav
    Mancuso, Adrian P.
    Chapman, Henry N.
    Hogue, Brenda G.
    Aquila, Andrew
    Barty, Anton
    Vartanyants, Ivan A.
    IUCRJ, 2018, 5 : 727 - 736
  • [6] Effect of radiation damage and illumination variability on signal-to-noise ratio in X-ray free-electron laser single-particle imaging
    Gureyev, Timur E.
    Kozlov, Alexander
    Morgan, Andrew J.
    Martin, Andrew, V
    Quiney, Harry M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2020, 76 : 664 - 676
  • [7] An advanced workflow for single-particle imaging with the limited data at an X-ray free-electron laser
    Assalauova, Dameli
    Kim, Young Yong
    Bobkov, Sergey
    Khubbutdinov, Ruslan
    Rose, Max
    Alvarez, Roberto
    Andreasson, Jakob
    Balaur, Eugeniu
    Contreras, Alice
    DeMirci, Hasan
    Gelisio, Luca
    Hajdu, Janos
    Hunter, Mark S.
    Kurta, Ruslan P.
    Li, Haoyuan
    McFadden, Matthew
    Nazari, Reza
    Schwander, Peter
    Teslyuk, Anton
    Walter, Peter
    Xavier, P. Lourdu
    Yoon, Chun Hong
    Zaare, Sahba
    Ilyin, Viacheslav A.
    Kirian, Richard A.
    Hogue, Brenda G.
    Aquila, Andrew
    Vartanyants, Ivan A.
    IUCRJ, 2020, 7 : 1102 - 1113
  • [8] Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers
    Bobkov, S. A.
    Teslyuk, A. B.
    Kurta, R. P.
    Gorobtsov, O. Yu.
    Yefanov, O. M.
    Ilyin, V. A.
    Senin, R. A.
    Vartanyants, I. A.
    JOURNAL OF SYNCHROTRON RADIATION, 2015, 22 : 1345 - 1352
  • [9] A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging
    Jiao, Zhichao
    He, Yao
    Fu, Xingke
    Zhang, Xin
    Geng, Zhi
    Ding, Wei
    IUCRJ, 2024, 11 : 602 - 619
  • [10] Expected resolution limits of x-ray free-electron laser single-particle imaging for realistic source and detector properties
    Juncheng, E.
    Kim, Y.
    Bielecki, J.
    Sikorski, M.
    de Wijn, R.
    Fortmann-Grote, C.
    Sztuk-Dambietz, J.
    Koliyadu, J. C. P.
    Letrun, R.
    Kirkwood, H. J.
    Sato, T.
    Bean, R.
    Mancuso, A. P.
    Kim, C.
    STRUCTURAL DYNAMICS-US, 2022, 9 (06):