Quantum information diode based on a magnonic crystal

被引:0
|
作者
Shukla, Rohit K. [1 ]
Chotorlishvili, Levan [2 ]
Vijayan, Vipin [1 ]
Verma, Harshit [3 ]
Ernst, Arthur [4 ,5 ]
Parkin, Stuart S. P. [4 ]
Mishra, Sunil K. [1 ]
机构
[1] Banaras Hindu Univ, Indian Inst Technol, Dept Phys, Varanasi 221005, India
[2] Rzeszow Univ Technol, Dept Phys & Med Engn, PL-35959 Rzeszow, Poland
[3] Univ Queensland, Ctr Engn Quantum Syst EQUS, Sch Math & Phys, St Lucia, Qld 4072, Australia
[4] Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany
[5] Johannes Kepler Univ Linz, Inst Theoret Phys, Alterger Str 69, A-4040 Linz, Austria
来源
MATERIALS FOR QUANTUM TECHNOLOGY | 2023年 / 3卷 / 03期
关键词
magnonics; magnetism; quantum information; SPIN-WAVES; MULTIFERROICS;
D O I
10.1088/2633-4356/ace603
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Exploiting the effect of nonreciprocal magnons in a system with no inversion symmetry, we propose a concept of a quantum information diode (QID), i.e. a device rectifying the amount of quantum information transmitted in the opposite directions. We control the asymmetric left and right quantum information currents through an applied external electric field and quantify it through the left and right out-of-time-ordered correlation. To enhance the efficiency of the QID, we utilize a magnonic crystal. We excite magnons of different frequencies and let them propagate in opposite directions. Nonreciprocal magnons propagating in opposite directions have different dispersion relations. Magnons propagating in one direction match resonant conditions and scatter on gate magnons. Therefore, magnon flux in one direction is damped in the magnonic crystal leading to an asymmetric transport of quantum information in the QID. A QID can be fabricated from an yttrium iron garnet film. This is an experimentally feasible concept and implies certain conditions: low temperature and small deviation from the equilibrium to exclude effects of phonons and magnon interactions. We show that rectification of the flaw of quantum information can be controlled efficiently by an external electric field and magnetoelectric effects.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Storage-Recovery Phenomenon in Magnonic Crystal
    Chumak, A. V.
    Vasyuchka, V. I.
    Serga, A. A.
    Kostylev, M. P.
    Tiberkevich, V. S.
    Hillebrands, B.
    PHYSICAL REVIEW LETTERS, 2012, 108 (25)
  • [32] Collective dynamical skyrmion excitations in a magnonic crystal
    Mruczkiewicz, M.
    Gruszecki, P.
    Zelent, M.
    Krawczyk, M.
    PHYSICAL REVIEW B, 2016, 93 (17)
  • [33] Current-driven tunability of magnonic crystal
    Polushkin, N. I.
    APPLIED PHYSICS LETTERS, 2011, 99 (18)
  • [34] FERRITE WAVEGUIDES' ARRAY AS A MODEL OF MAGNONIC CRYSTAL
    Vysotsky, S. L.
    Kazakov, G. T.
    Pavlov, E. S.
    APEDE 2008: INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRON DEVICES ENGINEERING, 2008, : 137 - 142
  • [35] Gap solitons in heterostructure magnonic crystal/semiconductor
    Morozova, M. A.
    Matveev, O., V
    Romanenko, D., V
    Sharaevsky, Yu P.
    Nikitov, S. A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (38)
  • [36] Formation of gap solitons in a finite magnonic crystal
    S. E. Sheshukova
    M. A. Morozova
    E. N. Beginin
    Yu. P. Sharaevskii
    S. A. Nikitov
    Physics of Wave Phenomena, 2013, 21 : 304 - 309
  • [37] Nonreciprocity of spin waves in metallized magnonic crystal
    Mruczkiewicz, M.
    Krawczyk, M.
    Gubbiotti, G.
    Tacchi, S.
    Filimonov, Yu A.
    Kalyabin, D. V.
    Lisenkov, I. V.
    Nikitov, S. A.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [38] Normal Mode Theory for Magnonic Crystal Waveguide
    Grigoryeva, N. Y.
    Kalinikos, B. A.
    MAGNONICS: FROM FUNDAMENTALS TO APPLICATIONS, 2013, 125 : 223 - 242
  • [39] A current-controlled, dynamic magnonic crystal
    Chumak, A. V.
    Neumann, T.
    Serga, A. A.
    Hillebrands, B.
    Kostylev, M. P.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (20)
  • [40] Twisted spin waves in a cylindrical magnonic crystal
    Li, Zhixiong
    Liu, Xuejuan
    Wang, Xiansi
    Wang, Zhenyu
    APPLIED PHYSICS LETTERS, 2025, 126 (09)