Multiple periodic solutions of second order parameter-dependent equations via rotation numbers

被引:1
|
作者
Liu, Chunlian [1 ]
Wang, Shuang [2 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
[2] Yancheng Teachers Univ, Sch Math & Stat, Yancheng 224051, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 10期
基金
中国国家自然科学基金;
关键词
periodic solutions; indefinite term; Poincare-Birkhoff twist theorem; rotation number; parameter-dependent; HAMILTONIAN-SYSTEMS;
D O I
10.3934/math.20231285
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of multiple periodic solutions for a class of second order parameter-dependent equations of the form x & DPRIME;+ f(t, x) = sp(t). We compare the behavior of its solutions with suitable linear and piecewise linear equations near positive infinity and infinity. Furthermore, in this context, the nonlinearity f does not satisfy the usual sign condition, and the global existence of solutions for the Cauchy problem associated to the equation is not guaranteed. Our approach is based on the Poincare-Birkhoff twist theorem, a rotation number approach and the phase-plane analysis. Our result generalizes the result in Fonda and Ghirardelli [1] for second order parameter-dependent equations.
引用
收藏
页码:25195 / 25219
页数:25
相关论文
共 50 条