Cooperative catalytic behavior of Bi2S3 and ZrO2 nanoparticles on Bi2O3 photoanodes for promoted stability and solar driven photoelectrochemical hydrogen production

被引:2
|
作者
Alharthi, Abdulrahman I. [1 ]
Shaddad, Maged N. [1 ]
Qahtan, Talal F. [2 ]
Alotaibi, Mshari A. [1 ]
Alanazi, Abdulaziz A. [1 ]
Arunachalam, Prabhakarn [3 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Chem, POB 173, Al Kharj 11942, Saudi Arabia
[2] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Phys, POB 173, Al Kharj 11942, Saudi Arabia
[3] King Saud Univ, Sci Coll, Dept Chem, Riyadh, Saudi Arabia
关键词
Ion-exchange; Bismuth oxide; Semiconductors; Zirconia; Electrolyte tuning; PHOTOCATALYTIC ACTIVITY; ELECTRONIC-STRUCTURE; HIGHLY EFFICIENT; WATER; HETEROJUNCTION; FABRICATION; NANOSTRUCTURES; NANOCOMPOSITES; BETA-BI2O3; FILMS;
D O I
10.1016/j.jallcom.2023.171733
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoelectrochemical water splitting via solar energy consumption is recognized as a strategy to address fossil resources and global warming concerns. Here, we reveal the co-catalytic effect of ZrO2 and Bi2S3 nanoparticles on nanostructured bismuth oxide (Bi2O3) electrodes synthesized by electrochemical deposition and an in-situ photoelectrochemical transformation process to fabricate heterostructured Bi2S3/Zr-Bi2O3 electrodes. The cooperative interaction between ZrO2 and Bi2S3 nanoparticles leads to a 12-fold enrichment in Bi2O3 electrode photocurrent density. The cooperation between the above features has considerably reduced the photocurrent onset potential, and improved the separation of charge carriers and optical features of the Bi2O3:Zr/Bi2S3 electrodes resulting in attaining an applied bias photon-to-current efficiency (ABPE) of 1.22 %. Through these examinations, it is possible to create a variety of nanostructured electrode films with adjustable optical and electronic features for solar cells, electrochemical energy storage, and PEC.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Photoelectrochemical behavior of Bi2S3 nanoclusters and nanostructured thin films
    Suarez, R
    Nair, PK
    Kamat, PV
    LANGMUIR, 1998, 14 (12) : 3236 - 3241
  • [22] Oxygen ionic transport in Bi2O3-based oxides: II. The Bi2O3–ZrO2–Y2O3 and Bi2O3–Nb2O5–Ho2O3 solid solutions
    Aleksey A. Yaremchenko
    Vladislav V. Kharton
    Evgeny N. Naumovich
    Anneta A. Tonoyan
    Viktor V. Samokhval
    Journal of Solid State Electrochemistry, 1998, 2 : 308 - 314
  • [23] THE PHOTOELECTROCHEMICAL PROPERTIES OF ANODIC BI2O3 FILMS
    METIKOSHUKOVIC, M
    ELECTROCHIMICA ACTA, 1981, 26 (08) : 989 - 1000
  • [24] PHOTOELECTROCHEMICAL PROPERTIES OF ANODIC BI2S3 FILMS
    PETER, LM
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1979, 98 (01): : 49 - 58
  • [25] Synthesis of Bi2S3 nanorods supported on ZrO2 semiconductor as an efficient photocatalyst for hydrogen production under UV and visible light
    Garcia-Mendoza, Cinthia
    Oros-Ruiz, Socorro
    Ramirez-Rave, Sandra
    Morales-Mendoza, Getsemani
    Lopez, Rosendo
    Gomez, Ricardo
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2017, 92 (07) : 1503 - 1510
  • [26] Facile preparation of a multicomponent catalytic system Bi2O3/Bi2S3/CDs with an exceptional catalytic activity in the photocatalytic reduction of 4-nitrophenol
    Jiang, Jun
    Ji, Rui
    Gu, Pei-Yang
    Wang, Peng
    Zhou, Shiyuan
    Chen, Zhidong
    Xu, Qingfeng
    COLLOID AND INTERFACE SCIENCE COMMUNICATIONS, 2022, 51
  • [27] Positron-Annihilation, Structural and Optical Studies on Properties of Nanostructured ZrO2, ZnO, Bi2O3 and ZnO-Bi2O3
    Fidelus, J. D.
    Karbowski, A.
    Grabis, J.
    Jusza, A.
    Piramidowicz, R.
    Brusa, R. S.
    Karwasz, G. P.
    ACTA PHYSICA POLONICA A, 2011, 120 (6A) : A66 - A68
  • [28] Bismuth(III) furfuryl based dithiocarbamates: Synthesis, structures, biological activities and their utility for the preparation of Bi2S3 and Bi2O3 nanoparticles
    Tamilvanan, Sundaramoorthy
    Gurumoorthy, Govindasamy
    Thirumaran, Subbiah
    Ciattini, Samuele
    POLYHEDRON, 2017, 123 : 111 - 121
  • [29] Synthesis of Lu2O3 - Bi2O3 Nanoparticles
    Benedikova, Alexandra
    Kejzlar, Pavel
    Kost'akova, Eva Kuzelova
    Tomka, David
    Gregr, Jan
    MANUFACTURING TECHNOLOGY, 2021, 21 (01): : 14 - 19
  • [30] β-Bi2O3的表面敏化:SILAR法沉积Bi2S3纳米晶
    章丰庆
    王君
    汪颖
    蒋良兴
    中南大学学报(自然科学版), 2022, 53 (02) : 409 - 417