Simplicial volume of closed locally homogeneous Riemannian manifolds

被引:0
|
作者
How, Peng Hui [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
Geometric topology; locally homogeneous Riemannian manifolds; simplicial volume; GEOMETRIC STRUCTURES;
D O I
10.1142/S179352532350022X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that every closed, locally homogeneous Riemannian manifold with positive simplicial volume must be homeomorphic to a locally symmetric space of non-compact type, giving a converse to a result by Lafont and Schmidt within the scope of closed, locally homogeneous Riemannian manifolds. This characterizes all closed locally homogeneous Riemannian manifolds with nonzero simplicial volume.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] On locally nonhomogeneous pseudo-Riemannian manifolds with locally homogeneous Levi-Civita connections
    Kowalski, O
    Vlásek, Z
    Opozda, B
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (05) : 559 - 572
  • [22] Cyclic homogeneous Riemannian manifolds
    Gadea, P. M.
    Gonzalez-Davila, J. C.
    Oubina, J. A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (05) : 1619 - 1637
  • [23] Geometry of homogeneous Riemannian manifolds
    Nikonorov Yu.G.
    Rodionov E.D.
    Slavskii V.V.
    Journal of Mathematical Sciences, 2007, 146 (6) : 6313 - 6390
  • [24] Cyclic homogeneous Riemannian manifolds
    P. M. Gadea
    J. C. González-Dávila
    J. A. Oubiña
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 1619 - 1637
  • [25] Homogeneous geodesics in homogeneous Riemannian manifolds - examples
    Kowalski, O
    Nikcevic, S
    Vlasek, Z
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 104 - 112
  • [26] On the existence of homogeneous geodesics in homogeneous Riemannian manifolds
    Kowalski, O
    Szenthe, J
    GEOMETRIAE DEDICATA, 2000, 81 (1-3) : 209 - 214
  • [27] Sweepouts of closed Riemannian manifolds
    Nabutovsky, Alexander
    Rotman, Regina
    Sabourau, Stephane
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (03) : 721 - 766
  • [28] Sweepouts of closed Riemannian manifolds
    Alexander Nabutovsky
    Regina Rotman
    Stéphane Sabourau
    Geometric and Functional Analysis, 2021, 31 : 721 - 766
  • [29] Closed hypersurfaces of prescribed mean curvature in locally conformally flat Riemannian manifolds
    Gerhardt, C
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1998, 48 (03) : 587 - 613
  • [30] On the Existence of Homogeneous Geodesics in Homogeneous Riemannian Manifolds
    Oldřich Kowalski
    János Szenthe
    Geometriae Dedicata, 2000, 81 : 209 - 214