An immersed boundary-lattice Boltzmann flux solver for simulation of flows around structures with large deformation

被引:2
|
作者
Zhang, Hua [1 ,2 ]
Liu, Yaguang [1 ,2 ]
Zhang, Zehua [2 ]
Wang, Lian-Ping [2 ,3 ,4 ]
Shu, Chang [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore
[2] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Turbulence Res & Applicat, Shenzhen 518055, Peoples R China
[4] Southern Univ Sci & Technol, Ctr Complex Flows & Soft Matter Res, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
ELASTIC CAPSULES; LIQUID CAPSULES; SHEAR-FLOW; MEMBRANES; MOTION; SHAPE;
D O I
10.1063/5.0141197
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we present an immersed boundary-lattice Boltzmann flux solver (IB-LBFS) to simulate the interactions of viscous flow with deformable elastic structures, namely, two-dimensional (2D) and three-dimensional (3D) capsules formed by elastic membranes. The IB-LBFS is based on a finite-volume formulation and makes use of hydrodynamic conservation equations with fluxes computed by a kinetic approach; thus, it is more flexible and efficient than the standard immersed boundary-lattice Boltzmann methods. The membrane of the 2D capsule is represented by a set of discrete Lagrangian points, with in-plane and bending forces acting on the membrane obtained by a finite difference method. In contrast, the membrane of a 3D capsule is discretized into flat triangular elements with membrane forces calculated by an energy-based finite-element method. The IB-LBFS is first validated by studying the deformation of a circular capsule in a linear Newtonian and a power-law shear flow. Next, the deformation dynamics of a spherical, an oblate spheroidal, and a biconcave capsule in a simple shear flow are simulated. For an initially spherical capsule, the tank-treading motion of its membrane is reproduced at the steady state; while for oblate spheroidal and biconcave capsules, the swinging and tumbling motions are observed. Furthermore, under certain parameter settings, the transient mode from tumbling to swinging motions is also found, showing a rich and complex dynamic behavior of non-spherical capsules. These results indicate that the IB-LBFS can be employed in future studies concerning the dynamics of a capsule suspension in more realistic flows.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Numerical simulation of hydrodynamic focusing of particles in straight channel flows with the immersed boundary-lattice Boltzmann method
    Sun Dong-Ke
    Bo Zheng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 80 : 139 - 149
  • [22] An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel
    Sun Dong-Ke
    Jiang Di
    Xiang Nan
    Chen Ke
    Ni Zhong-Hua
    CHINESE PHYSICS LETTERS, 2013, 30 (07)
  • [23] Development of Lattice Boltzmann Flux Solver for Simulation of Incompressible Flows
    Shu, C.
    Wang, Y.
    Teo, C. J.
    Wu, J.
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2014, 6 (04) : 436 - 460
  • [24] An implicit lattice Boltzmann flux solver for simulation of compressible flows
    Zhao, Xiang
    Yang, Liming
    Shu, Chang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 107 : 82 - 94
  • [25] An interfacial lattice Boltzmann flux solver for simulation of multiphase flows at large density ratio
    Li, You
    Niu, Xiao-Dong
    Wang, Yan
    Khan, Adnan
    Li, Qiao-Zhong
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 116 : 100 - 112
  • [26] An Efficient Immersed Boundary-Lattice Boltzmann Method for the Simulation of Thermal Flow Problems
    Hu, Yang
    Li, Decai
    Shu, Shi
    Niu, Xiaodong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (05) : 1210 - 1257
  • [27] An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel
    孙东科
    姜迪
    项楠
    陈科
    倪中华
    Chinese Physics Letters, 2013, 30 (07) : 128 - 131
  • [28] Simulation of a sessile nanofluid droplet freezing with an immersed boundary-lattice Boltzmann model
    Zhang, Chaoyang
    Yin, Shuai
    Zhang, Hui
    Yang, Chun
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2023, 167
  • [29] A coupled immersed boundary-lattice Boltzmann method and its simulation for biomimetic problems
    Wu, Jie
    Shu, Chang
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2015, 5 (01) : 16 - 19
  • [30] An immersed boundary-lattice boltzmann flux solver in a moving frame to study three-dimensional freely falling rigid bodies
    Wang, Y.
    Shu, C.
    Yang, L. M.
    Teo, C. J.
    JOURNAL OF FLUIDS AND STRUCTURES, 2017, 68 : 444 - 465