Tropical cyclone size estimation based on deep learning using infrared and microwave satellite data
被引:2
|
作者:
Xu, Jianbo
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R ChinaChina Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
Xu, Jianbo
[1
]
Wang, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Peoples R ChinaChina Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
Wang, Xiang
[2
]
Wang, Haiqi
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R ChinaChina Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
Wang, Haiqi
[1
]
Zhao, Chengwu
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Peoples R ChinaChina Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
Zhao, Chengwu
[2
]
Wang, Huizan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Peoples R ChinaChina Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
Wang, Huizan
[2
]
Zhu, Junxing
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Peoples R ChinaChina Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
Zhu, Junxing
[2
]
机构:
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao, Peoples R China
[2] Natl Univ Def Technol, Coll Meteorol & Oceanog, Changsha, Peoples R China
Tropical cyclone (TC) size is an important parameter for estimating TC risks such as wind damage, rainfall distribution, and storm surge. Satellite observation data are the primary data used to estimate TC size. Traditional methods of TC size estimation rely on a priori knowledge of the meteorological domain and emerging deep learning-based methods do not consider the considerable blurring and background noise in TC cloud systems and the application of multisource observation data. In this paper, we propose TC-Resnet, a deep learning-based model that estimates 34-kt wind radii (R34, commonly used as a measure of TC size) objectively by combining infrared and microwave satellite data. We regarded the resnet-50 model as the basic framework and embedded a convolution layer with a 5 x 5 convolution kernel on the shortcut branch in its residual block for downsampling to avoid the information loss problem of the original model. We also introduced a combined channel-spatial dual attention mechanism to suppress the background noise of TC cloud systems. In an R34 estimation experiment based on a global TC dataset containing 2003-2017 data, TC-Resnet outperformed existing methods of TC size estimation, obtaining a mean absolute error of 11.287 nmi and a Pearson correlation coefficient of 0.907.
机构:
Chinese Acad Sci, Inst Oceanog, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Inst Oceanog, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
Wang, Chong
Li, Xiaofeng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Oceanog, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R ChinaChinese Acad Sci, Inst Oceanog, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
机构:
Department of Physics, United States Air Force Academy, Colorado, United StatesDepartment of Physics, United States Air Force Academy, Colorado, United States
Brueske, Kurt F.
Velden, Christopher S.
论文数: 0引用数: 0
h-index: 0
机构:
Coop. Inst. Meteorol. Satellite Stud, University of Wisconsin-Madison, Madison, WI, United StatesDepartment of Physics, United States Air Force Academy, Colorado, United States