Effects of hydrogen on PAH and soot formation in laminar diffusion flames of RP-3 jet kerosene and its surrogate

被引:4
|
作者
Xin, Shirong [1 ]
He, Yong [1 ,2 ]
Weng, Wubing [1 ]
Zhu, Yanqun [1 ,2 ]
Wang, Zhihua [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Qingshanhu Energy Res Ctr, Hangzhou 311300, Peoples R China
关键词
Hydrogen; soot/PAH formation; Aviation kerosene surrogate; PLII/PLIF; Chemical kinetic modeling; CARBON-DIOXIDE; BIODIESEL SURROGATE; POLLUTANT EMISSIONS; SWIRLED FLAME; FUEL; TEMPERATURE; ETHYLENE; ENGINE; DIAGNOSTICS; ENRICHMENT;
D O I
10.1016/j.fuel.2023.130220
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
PAH and soot are harmful substances that can be produced in any type of combustion equipment including aircraft engines. The co-combustion of hydrogen and jet fuel has been applied in aero-engine combustors and large-scale hydrogen addition is a promising solution for reducing the consumption of fossil fuels in the aviation industry. However, it remains unclear how H-2 influences the soot and PAH formation characteristics of jet kerosene. In this study, to investigate the impact of H-2 on soot and PAH formation, planar laser-induced incandescence (PLII), planar laser-induced fluorescence of PAH (PAH-PLIF) and chemical kinetic simulation were conducted for the laminar diffusion flames of RP-3 jet kerosene and its surrogate S1 with different H-2 doping rates. It is found that the introduction of H-2 leads to the increased soot formation. However, the promotion effect of H-2 on the PAH formation weakens as the number of PAH rings increases, and the formation of A4 is significantly inhibited. But the rapidly increase of benzene and alkynes in the H-2-doped kerosene flame may ultimately lead to the promotion of soot formation. Furthermore, the changes in direct synthesis reactions and PAH=>PAH- jointly affect the converse changes in A1 and A4 formation. These findings will contribute to the development of the soot model and soot/PAH-reduction strategy for the co-combustion of jet fuels and hydrogen.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] CHEMICAL NONEQUILIBRIUM EFFECTS IN HYDROGEN-AIR LAMINAR JET DIFFUSION FLAMES
    MILLER, JA
    KEE, RJ
    JOURNAL OF PHYSICAL CHEMISTRY, 1977, 81 (25): : 2534 - 2542
  • [32] Soot reduction effects of dibutyl ether (DBE) addition to a biodiesel surrogate in laminar coflow diffusion flames
    Gao, Zhan
    Zhu, Lei
    Zou, Xinyao
    Liu, Chunpeng
    Tian, Bo
    Huang, Zhen
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (01) : 1265 - 1272
  • [33] Investigation of the Soot Formation in Ethylene Laminar Diffusion Flames When Diluted with Helium or Supplemented by Hydrogen
    Zhao, Huayong
    Stone, Richard
    Williams, Ben
    ENERGY & FUELS, 2014, 28 (03) : 2144 - 2151
  • [34] Effects of Oxygen Concentration on Soot Formation in Ethylene and Ethane Fuel Laminar Diffusion Flames
    Ju, Hongling
    Zhou, Renjie
    Zhang, Deman
    Deng, Peng
    Wang, Zhaowen
    ENERGIES, 2024, 17 (16)
  • [35] SOOT FORMATION IN WEAKLY BUOYANT ACETYLENE-FUELED LAMINAR JET DIFFUSION FLAMES BURNING IN AIR
    SUNDERLAND, PB
    KOYLU, UO
    FAETH, GM
    COMBUSTION AND FLAME, 1995, 100 (1-2) : 310 - 322
  • [36] A numerical and experimental study of soot formation in a laminar coflow diffusion flame of a Jet A-1 surrogate
    Saffaripour, M.
    Kholghy, M.
    Dworkin, S. B.
    Thomson, M. J.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 1057 - 1065
  • [37] Effects of prenol and isoprenol addition on soot and PAH formation in ethylene/methane counterflow diffusion flames
    Wang, Bowen
    Xu, Yishu
    Jiang, Zuozhou
    Liu, Yang
    Zhang, Kai
    Cheng, Xiaobei
    Yao, Junjie
    FUEL, 2023, 331
  • [38] On the opposing effects of methanol and ethanol addition on PAH and soot formation in ethylene counterflow diffusion flames
    Yan, Fuwu
    Xu, Lei
    Wang, Yu
    Park, Sungwoo
    Sarathy, S. Mani
    Chung, Suk Ho
    COMBUSTION AND FLAME, 2019, 202 : 228 - 242
  • [39] FUEL PYROLYSIS AND ITS EFFECTS ON SOOT FORMATION IN NON-PREMIXED LAMINAR JET FLAMES OF METHANE, PROPANE, AND DME
    Jeon, Min-Kyu
    Kim, Nam Il
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (06)
  • [40] A simplified chemical reaction mechanism for two-component RP-3 kerosene surrogate fuel and its verification
    Yan, Yingwen
    Liu, Yuchen
    Fang, Wen
    Liu, Yunpeng
    Li, Jinghua
    FUEL, 2018, 227 : 127 - 134