An ADMM based method for underdetermined box-constrained integer least squares problems

被引:0
|
作者
Chang, Xiao-Wen [1 ,2 ]
Ma, Tianchi [1 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 0E9, Canada
来源
OPTIMIZATION METHODS & SOFTWARE | 2024年 / 39卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Integer parameter estimation; underdetermined integer least squares; box constraints; alternating direction method of multipliers; enumeration; SPHERE DECODER; LATTICE; SEARCH; ALGORITHM;
D O I
10.1080/10556788.2023.2285492
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
To solve underdetermined box-constrained integer least squares (UBILS) problems, we propose an integer-constrained alternating direction method of multipliers (IADMM), which can be much more accurate than the ADMM method. To guarantee to find the optimal solution, then we incorporate IADMM to DTS, a tree search method, to make the latter more efficient. Numerical tests show that the combined method IADMM-DTS can be much faster than the original DTS method. Finally, we apply the combined method to a practical communication problem. Numerical results indicate that IADMM-DTS typically performs better than the commercial solvers CPLEX and MOSEK in terms of both efficiency and accuracy, and it can be used as an alternative to the commercial solver Gurobi for UBILS problems.
引用
收藏
页码:321 / 344
页数:24
相关论文
共 50 条
  • [1] Solving box-constrained integer least squares problems
    Chang, Xiao-Wen
    Han, Qing
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (01) : 277 - 287
  • [2] Flexible CGLS for box-constrained linear least squares problems
    Gazzola, Silvia
    [J]. 2021 21ST INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ITS APPLICATIONS ICCSA 2021, 2021, : 133 - 138
  • [3] ON BOX-CONSTRAINED TOTAL LEAST SQUARES PROBLEM
    Xu, Zhuoyi
    Xia, Yong
    Han, Deren
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 439 - 449
  • [4] An interior-point method for solving box-constrained underdetermined nonlinear systems
    Francisco, JB
    Krejic, N
    Martínez, JM
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 177 (01) : 67 - 88
  • [5] A convergent decomposition method for box-constrained optimization problems
    Cassioli, Andrea
    Sciandrone, Marco
    [J]. OPTIMIZATION LETTERS, 2009, 3 (03) : 397 - 409
  • [6] A convergent decomposition method for box-constrained optimization problems
    Andrea Cassioli
    Marco Sciandrone
    [J]. Optimization Letters, 2009, 3 : 397 - 409
  • [7] On the incomplete oblique projections method for solving box constrained least squares problems
    Scolnik, H.
    Echebest, N.
    Guardarucci, M. T.
    [J]. NUMERICAL ALGORITHMS, 2014, 66 (01) : 17 - 32
  • [8] On the incomplete oblique projections method for solving box constrained least squares problems
    H. Scolnik
    N. Echebest
    M. T. Guardarucci
    [J]. Numerical Algorithms, 2014, 66 : 17 - 32
  • [9] SOLVING ELLIPSOID-CONSTRAINED INTEGER LEAST SQUARES PROBLEMS
    Chang, Xiao-Wen
    Golub, Gene H.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (03) : 1071 - 1089
  • [10] A derivative-free method for solving box-constrained underdetermined nonlinear systems of equations
    Echebest, N.
    Schuverdt, M. L.
    Vignau, R. P.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) : 3198 - 3208