The Chromatic Number of a Graph with Two Odd Holes and an Odd Girth

被引:0
|
作者
Lan, Kaiyang [1 ]
Liu, Feng [2 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fujian 350003, Peoples R China
[2] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Chromatic number; Girth; Odd hole;
D O I
10.1007/s00373-023-02723-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An odd hole is an induced odd cycle of length at least five. Let l >= 2 be an integer, and let G(l) denote the family of graphs which have girth 2l + 1 and have no holes of odd length at least 2l + 5. In this paper, we prove that every graph G is an element of U(l >= 3)G(l) is 4-colourable.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [31] Graphs with Girth 2l+1 and Without Longer Odd Holes that Contain an Odd K4 -Subdivision
    Chen, Rong
    Zhou, Yidong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [32] Planar graphs of odd-girth at least 9 are homomorphic to the Petersen graph
    Dvorak, Z.
    Skrekovski, R.
    Valla, T.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (02) : 568 - 591
  • [33] ON THE COMPLEXITY OF TESTING FOR ODD HOLES AND INDUCED ODD PATHS
    BIENSTOCK, D
    DISCRETE MATHEMATICS, 1991, 90 (01) : 85 - 92
  • [34] Independence, Odd Girth, and Average Degree
    Loewenstein, Christian
    Pedersen, Anders Sune
    Rautenbach, Dieter
    Regen, Friedrich
    JOURNAL OF GRAPH THEORY, 2011, 67 (02) : 96 - 111
  • [35] ODD LITTLE HOLES
    SARGENT, R
    NEW SCIENTIST, 1992, 133 (1809) : 54 - 54
  • [36] Matchings in graphs of odd regularity and girth
    Costa, Vitor
    Dantas, Simone
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2013, 313 (24) : 2895 - 2902
  • [37] The odd girth of generalized Johnson graphs
    Caughman, John S.
    Herman, Ari J.
    Terada, Taiyo S.
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [38] ON ODD CIRCUITS IN CHROMATIC GRAPHS
    BROWN, WG
    JUNG, HA
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1969, 20 (1-2): : 129 - &
  • [39] On upper bounds of odd girth cages
    Araujo-Pardo, G.
    DISCRETE MATHEMATICS, 2010, 310 (10-11) : 1622 - 1626
  • [40] A generalization of the odd-girth theorem
    Mohammadian, A.
    DISCRETE MATHEMATICS, 2016, 339 (02) : 1052 - 1057