Enhanced b-value time-series calculation method using data-driven approach

被引:1
|
作者
Yin, Fengling [1 ]
Jiang, Changsheng [1 ]
机构
[1] China Earthquake Adm, Inst Geophys, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-series analysis; Earthquake hazards; Earthquake interaction; forecasting; and prediction; EARTHQUAKE SEQUENCE; MAGNITUDE; SELECTION; HETEROGENEITY; DIMENSION;
D O I
10.1093/gji/ggad419
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The temporal evolution analysis of b-value of the magnitude-frequency distribution (MFD) is essential for seismic risk analysis. However, ensuring the accuracy and rationality of these analyses depends on various factors, including data quality, data selection and the appropriate computation period partitioning. This study extends the data-driven b-value time-series calculation method, TbDD-BIC, by exploring different model selection techniques. To evaluate the method's effectiveness, we conducted assessments using both synthetic earthquake catalogues and actual seismic data. Our results indicate that selecting a proportion of optimal models (e.g. 5 per cent of the total number of models) using the Akaike information criterion (AIC) and computing the ensemble median yields accurate b0-values of the synthetic earthquake catalogue. This proposed method offers objective calculation rules and precise identification of abrupt b-value changes, enhancing seismicity simulation and seismic hazard analysis.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 50 条
  • [31] The value of time-series data for conservation planning
    Garcia-Baron, Isabel
    Giakoumi, Sylvaine
    Begona Santos, Maria
    Granado, Igor
    Louzao, Maite
    JOURNAL OF APPLIED ECOLOGY, 2021, 58 (03) : 608 - 619
  • [32] Data-driven decomposition of seasonal time series
    Heiler, S
    Feng, YH
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 91 (02) : 351 - 363
  • [33] Data-driven portmanteau tests for time series
    Baragona, Roberto
    Battaglia, Francesco
    Cucina, Domenico
    TEST, 2022, 31 (03) : 675 - 698
  • [34] Data-driven portmanteau tests for time series
    Roberto Baragona
    Francesco Battaglia
    Domenico Cucina
    TEST, 2022, 31 : 675 - 698
  • [35] Data-driven pitting evolution prediction for corrosion-resistant alloys by time-series analysis
    Jiang, Xue
    Yan, Yu
    Su, Yanjing
    NPJ MATERIALS DEGRADATION, 2022, 6 (01)
  • [36] Data-driven pitting evolution prediction for corrosion-resistant alloys by time-series analysis
    Xue Jiang
    Yu Yan
    Yanjing Su
    npj Materials Degradation, 6
  • [37] Data-Driven Distribution System Load Modeling for Quasi-Static Time-Series Simulation
    Zhu, Xiangqi
    Mather, Barry
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1556 - 1565
  • [38] A Nonparametric, Data-Driven Approach to Despiking Ocean Surface Wave Time Series
    Malila, Mika P.
    Bohlinger, Patrik
    Stole-Hentschel, Susanne
    Breivik, Oyvind
    Hope, Gaute
    Magnusson, Anne Karin
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2022, 39 (01) : 71 - 90
  • [39] A Nonparametric, Data-Driven Approach to Despiking Ocean Surface Wave Time Series
    Malila, Mika P.
    Bohlinger, Patrik
    Støle-Hentschel, Susanne
    Breivik, Øyvind
    Hope, Gaute
    Magnusson, Anne Karin
    Journal of Atmospheric and Oceanic Technology, 2022, 39 (01): : 71 - 90
  • [40] A Data-Driven Approach Using Deep Learning Time Series Prediction for Forecasting Power System Variables
    Kayedpour, Nezmin
    Samani, Arash E.
    De Kooning, Jeroen D. M.
    Vandevelde, Lieven
    Crevecoeur, Guillaume
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2019), 2019, : 43 - 47