Minimum Error Entropy Estimation Under Contaminated Gaussian Noise

被引:3
|
作者
Lopez, Carlos Alejandro [1 ]
de Cabrera, Ferran [1 ]
Riba, Jaume [1 ]
机构
[1] Univ Politecn Catalunya UPC, Dept Teoria Senyal & Comunicac, Signal Proc & Commun Grp SPCOM, Barcelona 08034, Spain
关键词
Minimum error entropy; R & eacute; nyi's entropy; concavity deficit; sparsity-promoting regularization; model-order selection; INFORMATION;
D O I
10.1109/LSP.2023.3324295
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
is shown that R & eacute;nyi's entropy of a Gaussian mixture with entropic index alpha is an element of (1, infinity] is upper-bounded by the cluster with minimum variance. This basic idea leads to a clean worst-case formulation of the minimum error entropy principle in the context of linear multi-sensor fusion by using a largely contaminated Gaussian distribution to model sensor errors with outliers. The obtained entropic best linear unbiased estimator leads to an operational interpretation in terms of a precision/reliability trade-off, it resonates closely with model-order selection methods, and it provides a possible information-theoretic root to sparsity promoting regularization.
引用
收藏
页码:1457 / 1461
页数:5
相关论文
共 50 条
  • [21] Fast rates of minimum error entropy with heavy-tailed noise
    Huang, Shouyou
    JOURNAL OF APPROXIMATION THEORY, 2022, 281
  • [22] Gaussian Extremality for Derivatives of Differential Entropy under the Additive Gaussian Noise Flow
    Zhang, Xiaobing
    Anantharam, Venkat
    Geng, Yanlin
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1605 - 1609
  • [23] MINIMUM MEAN SQUARED ERROR IMPULSE NOISE ESTIMATION AND CANCELLATION
    KERPEZ, KJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (07) : 1651 - 1662
  • [24] Signal enumeration in Gaussian and non-Gaussian noise using entropy estimation of eigenvalues
    Asadi, Hamid
    Seyfe, Babak
    DIGITAL SIGNAL PROCESSING, 2018, 78 : 163 - 174
  • [25] Heat Flow Derivatives and Minimum Mean-Square Error in Gaussian Noise
    Ledoux, Michel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (06) : 3401 - 3409
  • [26] Differential Entropy of the Conditional Expectation Under Additive Gaussian Noise
    Atalik, Arda
    Kose, Alper
    Gastpar, Michael
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4851 - 4866
  • [27] The minimum error entropy based robust wireless channel tracking in impulsive noise
    Xue, YS
    Zhu, XL
    IEEE COMMUNICATIONS LETTERS, 2002, 6 (06) : 228 - 230
  • [28] Entropy estimation for robust image segmentation in presence of non Gaussian noise
    de la Rosa, Jose I.
    Gutierrez, Osvaldo
    Villa-Hernandez, Jesus
    Moreno, Gamaliel
    Gonzalez, Efren
    Alaniz, Daniel
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (05) : 6991 - 7021
  • [29] Entropy estimation for robust image segmentation in presence of non Gaussian noise
    José I. de la Rosa
    Osvaldo Gutiérrez
    Jesús Villa-Hernández
    Gamaliel Moreno
    Efrén González
    Daniel Alaniz
    Multimedia Tools and Applications, 2021, 80 : 6991 - 7021
  • [30] Robust multivariate density estimation under Gaussian noise
    Kostkova, Jitka
    Flusser, Jan
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2020, 31 (03) : 1113 - 1143