Minimum Error Entropy Estimation Under Contaminated Gaussian Noise

被引:3
|
作者
Lopez, Carlos Alejandro [1 ]
de Cabrera, Ferran [1 ]
Riba, Jaume [1 ]
机构
[1] Univ Politecn Catalunya UPC, Dept Teoria Senyal & Comunicac, Signal Proc & Commun Grp SPCOM, Barcelona 08034, Spain
关键词
Minimum error entropy; R & eacute; nyi's entropy; concavity deficit; sparsity-promoting regularization; model-order selection; INFORMATION;
D O I
10.1109/LSP.2023.3324295
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
is shown that R & eacute;nyi's entropy of a Gaussian mixture with entropic index alpha is an element of (1, infinity] is upper-bounded by the cluster with minimum variance. This basic idea leads to a clean worst-case formulation of the minimum error entropy principle in the context of linear multi-sensor fusion by using a largely contaminated Gaussian distribution to model sensor errors with outliers. The obtained entropic best linear unbiased estimator leads to an operational interpretation in terms of a precision/reliability trade-off, it resonates closely with model-order selection methods, and it provides a possible information-theoretic root to sparsity promoting regularization.
引用
收藏
页码:1457 / 1461
页数:5
相关论文
共 50 条
  • [1] Additive Non-Gaussian Noise Channel Estimation by Using Minimum Error Entropy Criterion
    Heravi, Ahmad Reza
    Hodtani, Ghosheh Abed
    PROCEEDINGS OF THE 2017 7TH INTERNATIONAL CONFERENCE ON COMPUTER AND KNOWLEDGE ENGINEERING (ICCKE), 2017, : 181 - 186
  • [2] Generalized minimum error entropy Kalman filter for non-Gaussian noise
    He, Jiacheng
    Wang, Gang
    Yu, Huijun
    Liu, JunMing
    Peng, Bei
    ISA TRANSACTIONS, 2023, 136 : 663 - 675
  • [3] Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error
    Guo, Dongning
    Wu, Yihong
    Shamai , Shlomo
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) : 2371 - 2385
  • [4] MINIMUM ENTROPY OF ERROR PRINCIPLE IN ESTIMATION
    JANZURA, M
    KOSKI, T
    OTAHAL, A
    INFORMATION SCIENCES, 1994, 79 (1-2) : 123 - 144
  • [5] An Extended Result on the Optimal Estimation Under the Minimum Error Entropy Criterion
    Chen, Badong
    Wang, Guangmin
    Zheng, Nanning
    Principe, Jose C.
    ENTROPY, 2014, 16 (04) : 2223 - 2233
  • [6] Novel robust minimum error entropy wasserstein distribution kalman filter under model uncertainty and non-gaussian noise
    Feng, Zhenyu
    Wang, Gang
    Peng, Bei
    He, Jiacheng
    Zhang, Kun
    SIGNAL PROCESSING, 2023, 203
  • [7] Multipath Estimation Based on Centered Error Entropy Criterion for Non-Gaussian Noise
    Cheng, Lan
    Ren, Mi F.
    Xie, Gang
    IEEE ACCESS, 2016, 4 : 9978 - 9986
  • [8] Insights Into the Robustness of Minimum Error Entropy Estimation
    Chen, Badong
    Xing, Lei
    Xu, Bin
    Zhao, Haiquan
    Principe, Jose C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (03) : 731 - 737
  • [9] Robust Minimum Error Entropy Based Cubature Information Filter With Non-Gaussian Measurement Noise
    Li, Minzhe
    Jing, Zhongliang
    Leung, Henry
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 349 - 353
  • [10] Minimum entropy of error estimation for discrete random variables
    Janzura, M
    Koski, T
    Otahal, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) : 1193 - 1201