A Survey and Experimental Study on Privacy-Preserving Trajectory Data Publishing

被引:24
|
作者
Jin, Fengmei [1 ]
Hua, Wen [1 ]
Francia, Matteo [2 ]
Chao, Pingfu [3 ]
Orlowska, Maria E. [4 ]
Zhou, Xiaofang [5 ]
机构
[1] Univ Queensland, Brisbane, Qld 4072, Australia
[2] Univ Bologna, I-47522 Cesena, Italy
[3] Soochow Univ, Suzhou 215006, Jiangsu, Peoples R China
[4] Polish Japanese Acad Informat Technol, PL-02008 Warsaw, Poland
[5] Hong Kong Univ Sci & Technol, Kowloon, Hong Kong, Peoples R China
基金
澳大利亚研究理事会;
关键词
Trajectory; Data privacy; Privacy; Couplings; Spatiotemporal phenomena; Data models; Publishing; Trajectory data publishing; attack models; privacy protection models; privacy metrics; utility metrics; LOCATION-PRIVACY; ANONYMITY; ANONYMIZATION; UNCERTAINTY; INFORMATION; PROTECTION;
D O I
10.1109/TKDE.2022.3174204
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory data has become ubiquitous nowadays, which can benefit various real-world applications such as traffic management and location-based services. However, trajectories may disclose highly sensitive information of an individual including mobility patterns, personal profiles and gazetteers, social relationships, etc, making it indispensable to consider privacy protection when releasing trajectory data. Ensuring privacy on trajectories demands more than hiding single locations, since trajectories are intrinsically sparse and high-dimensional, and require to protect multi-scale correlations. To this end, extensive research has been conducted to design effective techniques for privacy-preserving trajectory data publishing. Furthermore, protecting privacy requires carefully balance two metrics: privacy and utility. In other words, it needs to protect as much privacy as possible and meanwhile guarantee the usefulness of the released trajectories for data analysis. In this survey, we provide a comprehensive study and a systematic summarization of existing protection models, privacy and utility metrics for trajectories developed in the literature. We also conduct extensive experiments on two real-life public trajectory datasets to evaluate the performance of several representative privacy protection models, demonstrate the trade-off between privacy and utility, and guide the choice of the right privacy model for trajectory publishing given certain privacy and utility desiderata.
引用
收藏
页码:5577 / 5596
页数:20
相关论文
共 50 条
  • [21] An efficient privacy-preserving approach for data publishing
    Xinyu Qian
    Xinning Li
    Zhiping Zhou
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 2077 - 2093
  • [22] Privacy-Preserving Continuous Event Data Publishing
    Rafiei, Majid
    van der Aalst, Wil M. P.
    BUSINESS PROCESS MANAGEMENT FORUM (BPM 2021), 2021, 427 : 178 - 194
  • [23] Privacy-preserving data publishing for cluster analysis
    Fung, Benjamin C. M.
    Wang, Ke
    Wang, Lingyu
    Hung, Patrick C. K.
    DATA & KNOWLEDGE ENGINEERING, 2009, 68 (06) : 552 - 575
  • [24] δ-Dependency for privacy-preserving XML data publishing
    Landberg, Anders H.
    Nguyen, Kinh
    Pardede, Eric
    Rahayu, J. Wenny
    JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 50 : 77 - 94
  • [25] An efficient privacy-preserving approach for data publishing
    Qian, Xinyu
    Li, Xinning
    Zhou, Zhiping
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (3) : 2077 - 2093
  • [26] Privacy-Preserving Data Publishing in Process Mining
    Rafiei, Majid
    van der Aalst, Wil M. P.
    BUSINESS PROCESS MANAGEMENT FORUM, BPM FORUM 2020, 2020, 392 : 122 - 138
  • [27] Towards Privacy-Preserving Speech Data Publishing
    Qian, Jianwei
    Han, Feng
    Hou, Jiahui
    Zhang, Chunhong
    Wang, Yu
    Li, Xiang-Yang
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2018), 2018, : 1088 - 1096
  • [28] DATA MINING AS A TOOL IN PRIVACY-PRESERVING DATA PUBLISHING
    Sramka, Michal
    NILCRYPT 10, 2010, 45 : 151 - 159
  • [29] A Semantic-Based Approach for Privacy-Preserving in Trajectory Publishing
    Ye, Ayong
    Zhang, Qiang
    Diao, Yiqing
    Zhang, Jiaomei
    Deng, Huina
    Cheng, Baorong
    IEEE ACCESS, 2020, 8 : 184965 - 184975
  • [30] Protecting sensitive place visits in privacy-preserving trajectory publishing
    Wang, Nana
    Kankanhalli, Mohan S.
    COMPUTERS & SECURITY, 2020, 97