Investigation of the degradation of proton exchange membrane water electrolysis cells using electrochemical impedance spectroscopy with distribution of relaxation times analysis

被引:8
|
作者
Batalla, B. Sanchez [1 ,2 ]
Bachmann, J. [1 ]
Weidlich, C.
机构
[1] DECHEMA Forschungsinst, Dept Appl Electrochem, Theodor Heuss Allee 25, D-60486 Frankfurt, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Pharm Chem Thin Film Mat, IZNF, Cauerstr 3, D-91058 Erlangen, Germany
关键词
Degradation; Distribution of relaxation times; Electrochemical impedance spectroscopy; Long-term performance; Proton exchange membrane water electrolysis cells; DECONVOLUTION; PERFORMANCE; DURABILITY; SPECTRA; LOSSES;
D O I
10.1016/j.electacta.2023.143492
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Reduction of catalyst loading on Proton Exchange Membrane (PEM) Electrolysis Cells (EC) is needed because of scarcity and high price of the catalyst. Monitoring the degradation of these cells is important to be able to allocate the different processes taking place. Electrochemical Impedance Spectroscopy (EIS) might be suitable for this purpose, but in its usual implementation, the system and the contribution of its components to the total resistance must be already known to build a suitable equivalent circuit model (ECM). Furthermore, the overlap of different processes in the Nyquist and Bode plots hinders the identification of single components of the system. The Distribution of Relaxation Times (DRT) analysis converts the EIS data into a distribution of time constants of individual processes. The contribution of each component to the full cell resistance can be identified by varying different operation parameters. In this work, a PEMEC with low iridium loading was analyzed by DRT and the faradaic processes were identified. A long-term test was carried out and the degradation of the cell was investigated by DRT analysis, to determine the components and processes which limit the cell performance.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Numerical Investigation on the Effects of Design Parameters and Operating Conditions on the Electrochemical Performance of Proton Exchange Membrane Water Electrolysis
    HASSAN Alamir H.
    WANG Xueye
    LIAO Zhirong
    XU Chao
    Journal of Thermal Science, 2023, 32 (06) : 1989 - 2007
  • [42] Numerical Investigation on the Effects of Design Parameters and Operating Conditions on the Electrochemical Performance of Proton Exchange Membrane Water Electrolysis
    Alamir H. Hassan
    Xueye Wang
    Zhirong Liao
    Chao Xu
    Journal of Thermal Science, 2023, 32 : 1989 - 2007
  • [43] Numerical Investigation on the Effects of Design Parameters and Operating Conditions on the Electrochemical Performance of Proton Exchange Membrane Water Electrolysis
    Hassan, Alamir H.
    Wang, Xueye
    Liao, Zhirong
    Xu, Chao
    JOURNAL OF THERMAL SCIENCE, 2023, 32 (06) : 1989 - 2007
  • [44] Distribution of relaxation times analysis of electrochemical hydrogen pump impedance spectra
    Braig, Michael
    Zeis, Roswitha
    JOURNAL OF POWER SOURCES, 2023, 576
  • [45] Distribution (function) of relaxation times, successor to complex nonlinear least squares analysis of electrochemical impedance spectroscopy?
    Boukamp, Bernard A.
    JOURNAL OF PHYSICS-ENERGY, 2020, 2 (04):
  • [46] Investigation of solar cell degradation using electrochemical impedance spectroscopy
    Sharma, Dinesh Kumar
    Pareek, Kapil
    Chowdhury, Amartya
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (11) : 8730 - 8739
  • [47] Electrochemical impedance investigation of flooding in micro-flow channels for proton exchange membrane fuel cells
    Cha, Suk Won
    O'Hayre, Ryan
    Park, Yong-Il
    Prinz, F. B.
    JOURNAL OF POWER SOURCES, 2006, 161 (01) : 138 - 142
  • [48] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    WANG ZhiMing
    XU Chao
    WANG XueYe
    LIAO ZhiRong
    DU XiaoZe
    Science China Technological Sciences, 2021, 64 (07) : 1555 - 1566
  • [49] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    Wang ZhiMing
    Xu Chao
    Wang XueYe
    Liao ZhiRong
    Du XiaoZe
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1555 - 1566
  • [50] Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
    ZhiMing Wang
    Chao Xu
    XueYe Wang
    ZhiRong Liao
    XiaoZe Du
    Science China Technological Sciences, 2021, 64 : 1555 - 1566