A Novel Hybrid Deep Learning Model for Forecasting Ultra-Short-Term Time Series Wind Speeds for Wind Turbines

被引:0
|
作者
Yang, Jianzan [1 ]
Pang, Feng [1 ]
Xiang, Huawei [1 ]
Li, Dacheng [1 ]
Gu, Bo [2 ]
机构
[1] Powerchina Guiyang Engn Corp Ltd, Guiyang 550081, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Elect Engn, Zhengzhou 450011, Peoples R China
关键词
variational mode decomposition; arithmetic optimization algorithm; gated recurrent unit; ultra-short-term forecasting; time series wind speed; SYSTEM;
D O I
10.3390/pr11113247
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Accurate forecasting of ultra-short-term time series wind speeds (UTSWS) is important for improving the efficiency and safe and stable operation of wind turbines. To address this issue, this study proposes a VMD-AOA-GRU based method for UTSWS forecasting. The proposed method utilizes variational mode decomposition (VMD) to decompose the wind speed data into temporal mode components with different frequencies and effectively extract high-frequency wind speed features. The arithmetic optimization algorithm (AOA) is then employed to optimize the hyperparameters of the model of the gated recurrent unit (GRU), including the number of hidden neurons, training epochs, learning rate, learning rate decay period, and training data temporal length, thereby constructing a high-precision AOA-GRU forecasting model. The AOA-GRU forecasting model is trained and tested using different frequency temporal mode components obtained from the VMD, which achieves multi-step accurate forecasting of the UTSWS. The forecasting results of the GRU, VMD-GRU, VMD-AOA-GRU, LSTM, VMD-LSTM, PSO-ELM, VMD-PSO-ELM, PSO-BP, VMD-PSO-BP, PSO-LSSVM, VMD-PSO-LSSVM, ARIMA, and VMD-ARIMA are compared and analyzed. The calculation results show that the VMD algorithm can accurately mine the high-frequency components of the time series wind speed, which can effectively improve the forecasting accuracy of the forecasting model. In addition, optimizing the hyperparameters of the GRU model using the AOA can further improve the forecasting accuracy of the GRU model.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] An ultra-short-term wind power forecasting method in regional grids
    Li, Zhi
    Han, Xueshan
    Han, Li
    Kang, Kai
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2010, 34 (07): : 90 - 94
  • [22] Ultra-short-term photovoltaic power forecasting of multifeature based on hybrid deep learning
    Huang, Yanguo
    Zhou, Manguo
    Yang, Xungen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1370 - 1386
  • [23] Ultra-Short-Term Wind Speed Forecasting for Wind Power Based on Gated Recurrent Unit
    Syu, Yu-Dian
    Wang, Jen-Cheng
    Chou, Cheng-Ying
    Lin, Ming-Jhou
    Liang, Wei-Chih
    Wu, Li-Cheng
    Jiang, Joe-Air
    2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [24] Ultra-short-term wind power forecasting based on a dual-channel deep learning model with improved coot optimization algorithm
    He, Xingyue
    He, Bitao
    Qin, Tao
    Lin, Chuan
    Yang, Jing
    ENERGY, 2024, 305
  • [25] Ultra-short-term forecasting of wind power based on multi-task learning and LSTM
    Junqiang, Wei
    Xuejie, Wu
    Tianming, Yang
    Runhai, Jiao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 149
  • [26] Ultra-short-term wind power forecasting based on contrastive learning-assisted training
    Wang Y.
    Zhu N.
    Xie H.
    Li J.
    Zhang K.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (03): : 89 - 97
  • [27] An ultra-short-term wind speed forecasting model based on time scale recognition and dynamic adaptive modeling
    Zhen, Zhao
    Qiu, Gang
    Mei, Shengwei
    Wang, Fei
    Zhang, Xuemin
    Yin, Rui
    Li, Yu
    Osorio, Gerardo J.
    Shafie-khah, Miadreza
    Catalao, Joao P. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 135
  • [28] An Ultra-Short-Term and Short-Term Wind Power Forecasting Approach Based on Optimized Artificial Neural Network with Time Series Reconstruction
    Zha, Lihan
    Jiang, DongXiang
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 2068 - 2073
  • [29] Ultra-Short-Term Forecasting of Wind Speed using Lightweight Features and Machine Learning Models
    Al-Hajj, Rami
    Fouad, Mohamad M.
    Assi, Ali
    Mabrouk, Emad
    2023 12TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS, ICRERA, 2023, : 93 - 97
  • [30] A novel ultra-short-term wind power forecasting method based on TCN and Informer models
    Li, Qi
    Ren, Xiaoying
    Zhang, Fei
    Gao, Lu
    Hao, Bin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 120