Spectral Properties of Weighted Composition Operators on Hol(D) Induced by Rotations

被引:0
|
作者
Arendt, Wolfgang [1 ]
Bernard, Dddy [2 ]
Celaries, Benjamin [2 ]
Chalendar, Isabelle [2 ]
机构
[1] Univ Ulm, Inst Appl Anal, Helmholtzstr 18, D-89069 Ulm, Germany
[2] Univ Gustave Eiffel, LAMA, CNRS, UPEM,UPEC,UMR 8050, F-77454 Marne La Vallee, France
关键词
Weighted composition operator; rotation; spectrum; holomorphic functions; Hardy space; disc algebra; Waelbroeck spectrum; diophantine numbers;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study the spectrum sigma(T) and Waelbroeck spectrum sigma W (T) of a weighted composition operator T induced by a rotation on Hol(D) and given byTf (z) = m(z)f (beta z), (z E D)where m E Hol(D), beta E C, |beta| = 1. If beta n * 1 for all n E N we show that sigma W(T) is a disc if m(z0) = 0 for some z0 E D, and it is the circle {lambda E C : |lambda| = |m(0)|} if m(z) * 0 for all z E D. We find examples of m E A(D) (the disc algebra) such that lambda Id -T is invertible in Hol(D) (the Fre ' chet space of all holomorphic functions on D), but (lambda Id -T )-1A(D) ct A(D). Inspired by Bonet [2] we show that {beta n : n E N} c sigma (T) * T when the weight is m equivalent to 1 and beta a Diophantine number. This shows that the spectrum is not closed in general.
引用
收藏
页码:1789 / 1820
页数:32
相关论文
共 50 条