Estimation of Genetic Correlation Between Rheumatoid Arthritis and Multiple Sclerosis Using Summary Statistics from Genome-Wide Association Studies

被引:0
|
作者
Oztornaci, Ragip Onur [1 ]
机构
[1] Koc Univ, Translat Res Ctr, Istanbul, Turkiye
来源
关键词
Genetic correlation; linkage disequilibrium score regression (LDSC); linkage disequilibrium adjusted kinship (LDAK); genome-wide association studies summary statistics; snp heritability; LD SCORE REGRESSION; SNP-HERITABILITY;
D O I
10.14744/cpr.2023.18209
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Genome-wide association studies (GWAS) have revolutionized our understanding of the genetic basis of diseases by examining millions of genetic variants across the genome. Rheumatoid arthritis (RA) and multiple sclerosis (MS) are chronic autoimmune diseases characterized by immune system dysregulation and inflammation. Investigating the genetic correlation between RA and MS can provide insights into shared genetic factors, potential mechanisms, and pathways underlying these complex disorders. The objective of this study was to compare different statistical methods to estimate the genetic correlation between RA and MS using GWAS summary statistics.Materials and Methods: To estimate single nucleotide polymorphism (SNP) heritability and genetic correlation, we utilized two popular methods: Linkage Disequilibrium Score Regression (LDSC) and Linkage Disequilibrium Adjusted Kinship (LDAK) models.Results: Our analysis revealed a significant, moderate, positive correlation between RA and MS using both LDSC and LDAK (LSDCMS-RA=0.448, LDAK(MS-RA)=0.387, Spearman(MS-RA)=0.0262, p<0.001). Additionally, there were notable differences in heritability estimates between the two methods and the traits. The LDAK model demonstrated higher heritability estimates for the RA-MS relationship (h(MS-RA)(2) =0.314) compared to the LDSC (h(RA-MS )(2)=0.138).Conclusion: There is a significant positive genetic correlation between RA and MS, indicating a shared genetic component. Differential heritability estimates from LDAK and LDSC highlight the importance of the method. Genetic overlap informs common pathways and potential therapeutic targets. These findings contribute to the evidence of a moderately positive genetic correlation, emphasizing the need for further research and personalized approaches to managing autoimmune diseases.
引用
收藏
页码:575 / 580
页数:6
相关论文
共 50 条
  • [31] Multivariate Analysis of Anthropometric Traits Using Summary Statistics of Genome-Wide Association Studies from GIANT Consortium
    Park, Haeil
    Li, Xiaoyin
    Song, Yeunjoo E.
    He, Karen Y.
    Zhu, Xiaofeng
    PLOS ONE, 2016, 11 (10):
  • [32] Comparison of three summary statistics for ranking genes in genome-wide association studies
    Freytag, Saskia
    Bickeboeller, Heike
    STATISTICS IN MEDICINE, 2014, 33 (11) : 1828 - 1841
  • [33] Multivariate Analysis of Anthropometric Traits using Summary Statistics of Genome-Wide Association Studies from GIANT Consortium
    Park, Haeil
    Li, Xiaoyin
    Song, Yeunjoo E.
    He, Karen Y.
    Zhu, Xiaofeng
    GENETIC EPIDEMIOLOGY, 2016, 40 (07) : 655 - 656
  • [34] Multivariate Analyses of Summary Statistics from Genome-Wide Association Studies: The Role of Covariance Structures
    Pirinen, Matti
    Benner, Christian
    HUMAN HEREDITY, 2016, 81 (04) : 212 - 212
  • [35] Amyotrophic Lateral Sclerosis Genetic Studies: From Genome-wide Association Mapping to Genome Sequencing
    He, Ji
    Mangelsdorf, Marie
    Fan, Dongsheng
    Bartlett, Perry
    Brown, Matthew A.
    NEUROSCIENTIST, 2015, 21 (06): : 599 - 615
  • [36] Partitioning heritability by functional annotation using genome-wide association summary statistics
    Hilary K Finucane
    Brendan Bulik-Sullivan
    Alexander Gusev
    Gosia Trynka
    Yakir Reshef
    Po-Ru Loh
    Verneri Anttila
    Han Xu
    Chongzhi Zang
    Kyle Farh
    Stephan Ripke
    Felix R Day
    Shaun Purcell
    Eli Stahl
    Sara Lindstrom
    John R B Perry
    Yukinori Okada
    Soumya Raychaudhuri
    Mark J Daly
    Nick Patterson
    Benjamin M Neale
    Alkes L Price
    Nature Genetics, 2015, 47 : 1228 - 1235
  • [37] Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data
    Wang, Joanne H.
    Pappas, Derek
    De Jager, Philip L.
    Pelletier, Daniel
    de Bakker, Paul I. W.
    Kappos, Ludwig
    Polman, Chris H.
    Chibnik, Lori B.
    Hafler, David A.
    Matthews, Paul M.
    Hauser, Stephen L.
    Baranzini, Sergio E.
    Oksenberg, Jorge R.
    GENOME MEDICINE, 2011, 3
  • [38] Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data
    Joanne H Wang
    Derek Pappas
    Philip L De Jager
    Daniel Pelletier
    Paul IW de Bakker
    Ludwig Kappos
    Chris H Polman
    Lori B Chibnik
    David A Hafler
    Paul M Matthews
    Stephen L Hauser
    Sergio E Baranzini
    Jorge R Oksenberg
    Genome Medicine, 3
  • [39] Partitioning heritability by functional annotation using genome-wide association summary statistics
    Finucane, Hilary K.
    Bulik-Sullivan, Brendan
    Gusev, Alexander
    Trynka, Gosia
    Reshef, Yakir
    Loh, Po-Ru
    Anttila, Verneri
    Xu, Han
    Zang, Chongzhi
    Farh, Kyle
    Ripke, Stephan
    Day, Felix R.
    Purcell, Shaun
    Stahl, Eli
    Lindstrom, Sara
    Perry, John R. B.
    Okada, Yukinori
    Raychaudhuri, Soumya
    Daly, Mark J.
    Patterson, Nick
    Neale, Benjamin M.
    Price, Alkes L.
    NATURE GENETICS, 2015, 47 (11) : 1228 - +
  • [40] Manhattan++: displaying genome-wide association summary statistics with multiple annotation layers
    Christopher Grace
    Martin Farrall
    Hugh Watkins
    Anuj Goel
    BMC Bioinformatics, 20