AdaEE: Adaptive Early-Exit DNN Inference Through Multi-Armed Bandits

被引:1
|
作者
Pacheco, Roberto G. [1 ]
Shifrin, Mark [2 ]
Couto, Rodrigo S. [1 ]
Menasche, Daniel S. [1 ]
Hanawal, Manjesh K. [3 ]
Campista, Miguel Elias M. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[2] Ben Gurion Univ Negev, Beer Sheva, Israel
[3] Indian Inst Technol, Bombay, Maharashtra, India
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1109/ICC45041.2023.10279243
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Deep Neural Networks (DNNs) are widely used to solve a growing number of tasks, such as image classification. However, their deployment at resource-constrained devices still poses challenges related to energy consumption and delay overheads. Early-Exit DNNs (EE-DNNs) address the challenges by adding side branches through their architecture. Under an edge-cloud co-inference, if the confidence at a side branch is larger than a fixed confidence threshold, the inference is performed completely at the edge device, saving computation for more difficult observations. Otherwise, the edge device offloads the inference task to the cloud, incurring overhead. Despite its success, EE-DNNs for image classification have to cope with distorted images. The baseline distortion level depends on the environmental context, e.g., time of the day, lighting, and weather conditions. To cope with varying distortion, we propose Adaptive Early-Exit in Deep Neural Networks (AdaEE), a novel algorithm to dynamically adjust the confidence threshold based on context, leveraging the Upper Confidence Bound (UCB) for that matter. AdaEE provably achieves logarithmic regret under mild conditions. We experimentally verify that 1) convergence occurs after collecting a few thousand observations for images with different distortion levels and overhead values, and 2) AdaEE obtains a lower cumulative regret when compared against alternatives using the Caltech-256 dataset subject to varying distortion.
引用
收藏
页码:3726 / 3731
页数:6
相关论文
共 50 条
  • [41] LEVY BANDITS: MULTI-ARMED BANDITS DRIVEN BY LEVY PROCESSES
    Kaspi, Haya
    Mandelbaum, Avi
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (02): : 541 - 565
  • [42] Successive Reduction of Arms in Multi-Armed Bandits
    Gupta, Neha
    Granmo, Ole-Christoffer
    Agrawala, Ashok
    RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXVIII: INCORPORATING APPLICATIONS AND INNOVATIONS IN INTELLIGENT SYSTEMS XIX, 2011, : 181 - +
  • [43] Quantum greedy algorithms for multi-armed bandits
    Hiroshi Ohno
    Quantum Information Processing, 22
  • [44] Multi-armed linear bandits with latent biases
    Kang, Qiyu
    Tay, Wee Peng
    She, Rui
    Wang, Sijie
    Liu, Xiaoqian
    Yang, Yuan-Rui
    Information Sciences, 2024, 660
  • [45] Algorithms for Differentially Private Multi-Armed Bandits
    Tossou, Aristide C. Y.
    Dimitrakakis, Christos
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2087 - 2093
  • [46] Combinatorial Multi-armed Bandits for Resource Allocation
    Zuo, Jinhang
    Joe-Wong, Carlee
    2021 55TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2021,
  • [47] TRANSFER LEARNING FOR CONTEXTUAL MULTI-ARMED BANDITS
    Cai, Changxiao
    Cai, T. Tony
    Li, Hongzhe
    ANNALS OF STATISTICS, 2024, 52 (01): : 207 - 232
  • [48] Quantum Reinforcement Learning for Multi-Armed Bandits
    Liu, Yi-Pei
    Li, Kuo
    Cao, Xi
    Jia, Qing-Shan
    Wang, Xu
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5675 - 5680
  • [49] Multi-armed bandits in discrete and continuous time
    Kaspi, H
    Mandelbaum, A
    ANNALS OF APPLIED PROBABILITY, 1998, 8 (04): : 1270 - 1290
  • [50] Multi-armed Bandits with Metric Switching Costs
    Guha, Sudipto
    Munagala, Kamesh
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT II, PROCEEDINGS, 2009, 5556 : 496 - +