ARENA-INDEPENDENT FINITE-MEMORY DETERMINACY IN STOCHASTIC GAMES

被引:1
|
作者
Bouyer, Patricia [1 ]
Oualhadj, Youssouf [2 ]
Randour, Mickael [3 ,4 ]
Vandenhove, Pierre [1 ,3 ,4 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Methodes Formelles, ENS Paris Saclay, F-91190 Gif Sur Yvette, France
[2] Univ Paris Est Creteil, LACL, F-94010 Creteil, France
[3] FRS FNRS, Brussels, Belgium
[4] UMONS Univ Mons, Mons, Belgium
关键词
two-player games on graphs; stochastic games; Markov decision processes; finite-memory determinacy; optimal strategies; COMPLEXITY; AUTOMATA;
D O I
10.46298/LMCS-19(4:18)2023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study stochastic zero-sum games on graphs, which are prevalent tools to model decision-making in presence of an antagonistic opponent in a random environment. In this setting, an important question is the one of strategy complexity: what kinds of strategies are sufficient or required to play optimally (e.g., randomization or memory requirements)? Our contributions further the understanding of arena-independent finite-memory (AIFM) determinacy, i.e., the study of objectives for which memory is needed, but in a way that only depends on limited parameters of the game graphs. First, we show that objectives for which pure AIFM strategies suffice to play optimally also admit pure AIFM subgame perfect strategies. Second, we show that we can reduce the study of objectives for which pure AIFM strategies suffice in two-player stochastic games to the easier study of one-player stochastic games (i.e., Markov decision processes). Third, we characterize the sufficiency of AIFM strategies through two intuitive properties of objectives. This work extends a line of research started on deterministic games to stochastic ones.
引用
收藏
页码:1 / 18
页数:51
相关论文
共 50 条