A Novel Hybridoma Cell Segmentation Method Based on Multi-Scale Feature Fusion and Dual Attention Network

被引:10
|
作者
Lu, Jianfeng [1 ]
Ren, Hangpeng [1 ]
Shi, Mengtao [1 ]
Cui, Chen [1 ,2 ]
Zhang, Shanqing [1 ]
Emam, Mahmoud [1 ,3 ]
Li, Li [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Zhejiang Police Coll, Minist Publ Secur, Key Lab Publ Secur Informat Applicat Based Big Dat, Hangzhou 310000, Peoples R China
[3] Menoufia Univ, Fac Artificial Intelligence, Shibin Al Kawm 32511, Egypt
基金
中国国家自然科学基金;
关键词
hybridoma cell segmentation; deep learning; feature fusion; attention mechanism; RA-UNet; focal loss; IMAGE SEGMENTATION; MR-IMAGES;
D O I
10.3390/electronics12040979
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The hybridoma cell screening method is usually done manually by human eyes during the production process for monoclonal antibody drugs. This traditional screening method has certain limitations, such as low efficiency and subjectivity bias. Furthermore, most of the existing deep learning-based image segmentation methods have certain drawbacks, due to different shapes of hybridoma cells and uneven location distribution. In this paper, we propose a deep hybridoma cell image segmentation method based on residual and attention U-Net (RA-UNet). Firstly, the feature maps of the five modules in the network encoder are used for multi-scale feature fusion in a feature pyramid form and then spliced into the network decoder to enrich the semantic level of the feature maps in the decoder. Secondly, a dual attention mechanism module based on global and channel attention mechanisms is presented. The global attention mechanism (non-local neural network) is connected to the network decoder to expand the receptive field of the feature map and bring more rich information to the network. Then, the channel attention mechanism SENet (the squeeze-and-excitation network) is connected to the non-local attention mechanism. Consequently, the important features are enhanced by the learning of the feature channel weights, and the secondary features are suppressed, hence improving the cell segmentation performance and accuracy. Finally, the focal loss function is used to guide the network to learn the hard-to-classify cell categories. Furthermore, we evaluate the performance of the proposed RA-UNet method on a newly established hybridoma cell image dataset. Experimental results show that the proposed method has good reliability and improves the efficiency of hybridoma cell segmentation compared with state-of-the-art networks such as FCN, UNet, and UNet++. The results show that the proposed RA-UNet model has improvements of 0.8937%, 0.9926%, 0.9512%, and 0.9007% in terms of the dice coefficients, PA, MPA, and MIoU, respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Dual Attention Based Multi-scale Feature Fusion Network for Indoor RGBD Semantic Segmentation
    Hua, Zhongwei
    Qi, Lizhe
    Du, Daming
    Jiang, Wenxuan
    Sun, Yunquan
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3639 - 3644
  • [2] Multi-scale feature fusion network with local attention for lung segmentation
    Xie, Yinghua
    Zhou, Yuntong
    Wang, Chen
    Ma, Yanshan
    Yang, Ming
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119
  • [3] Semantic Segmentation of Remote Sensing Images Based on Dual Attention and Multi-scale Feature Fusion
    Weng, Mengqian
    Hu, Zhibo
    Xie, Xiaopeng
    Li, Yunhong
    Hu, Lei
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [4] Self-Attention-based Multi-Scale Feature Fusion Network for Road Ponding Segmentation
    Yang, Shangyu
    Zhang, Ronghui
    Sun, Wencai
    Chen, Shengru
    Ye, Cong
    Wu, Hao
    Li, Mengran
    [J]. 2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,
  • [5] Collaborative Attention Guided Multi-Scale Feature Fusion Network for Medical Image Segmentation
    Xu, Zhenghua
    Tian, Biao
    Liu, Shijie
    Wang, Xiangtao
    Yuan, Di
    Gu, Junhua
    Chen, Junyang
    Lukasiewicz, Thomas
    Leung, Victor C. M.
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1857 - 1871
  • [6] A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour
    Huang, Chenxi
    Lan, Yisha
    Xu, Gaowei
    Zhai, Xiaojun
    Wu, Jipeng
    Lin, Fan
    Zeng, Nianyin
    Hong, Qingqi
    Ng, E. Y. K.
    Peng, Yonghong
    Chen, Fei
    Zhang, Guokai
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (01) : 62 - 69
  • [7] Semantic Segmentation Method Based on Residual and Multi-Scale Feature Fusion
    Xiu, Chunbo
    Su, Huan
    Su, Xuemiao
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2078 - 2083
  • [8] MFA-UNet: a vessel segmentation method based on multi-scale feature fusion and attention module
    Cao, Juan
    Chen, Jiaran
    Gu, Yuanyuan
    Liu, Jinjia
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [9] Siamese Network with Multi-scale Feature Fusion and Dual Attention Mechanism for Template Matching
    Zhao, Kai
    He, Binbing
    Pan, Shiju
    Zhu, Yuan
    [J]. 2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6588 - 6592
  • [10] A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation
    Wang, Shubin
    Chen, Yuanyuan
    Yi, Zhang
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (07):