MFA-UNet: a vessel segmentation method based on multi-scale feature fusion and attention module

被引:1
|
作者
Cao, Juan [1 ]
Chen, Jiaran [1 ]
Gu, Yuanyuan [2 ]
Liu, Jinjia [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Informat Sci & Engn, Chongqing, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China
关键词
vessel segmentation; fundus images; deep neural network; self-attention mechanism; deep supervision; FUNDUS IMAGE; NETWORK; ACCURATE; NET;
D O I
10.3389/fnins.2023.1249331
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
IntroductionThe accurate segmentation of retinal vessels is of utmost importance in the diagnosis of retinal diseases. However, the complex vessel structure often leads to poor segmentation performance, particularly in the case of microvessels.MethodsTo address this issue, we propose a vessel segmentation method composed of preprocessing and a multi-scale feature attention network (MFA-UNet). The preprocessing stage involves the application of gamma correction and contrast-limited adaptive histogram equalization to enhance image intensity and vessel contrast. The MFA-UNet incorporates the Multi-scale Fusion Self-Attention Module(MSAM) that adjusts multi-scale features and establishes global dependencies, enabling the network to better preserve microvascular structures. Furthermore, the multi-branch decoding module based on deep supervision (MBDM) replaces the original output layer to achieve targeted segmentation of macrovessels and microvessels. Additionally, a parallel attention mechanism is embedded into the decoder to better exploit multi-scale features in skip paths.ResultsThe proposed MFA-UNet yields competitive performance, with dice scores of 82.79/83.51/84.17/78.60/81.75/84.04 and accuracies of 95.71/96.4/96.71/96.81/96.32/97.10 on the DRIVE, STARE, CHASEDB1, HRF, IOSTAR and FIVES datasets, respectively.DiscussionIt is expected to provide reliable segmentation results in clinical diagnosis.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] CMP-UNet: A Retinal Vessel Segmentation Network Based on Multi-Scale Feature Fusion
    Gu, Yanan
    Cao, Ruyi
    Wang, Dong
    Lu, Bibo
    [J]. ELECTRONICS, 2023, 12 (23)
  • [2] MM-UNet: Multi-attention mechanism and multi-scale feature fusion UNet for tumor image segmentation
    Xing, Yaozheng
    Yuan, Jie
    Liu, Qixun
    Peng, Shihao
    Yan, Yan
    Yao, Junyi
    [J]. 2023 2ND ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING, CACML 2023, 2023, : 253 - 257
  • [3] Water body segmentation in remote sensing images based on multi-scale fusion attention module improved UNet
    Shi, Tian-Tan
    Guo, Zhong-Hua
    Yan, Xiang
    Wei, Shi-Qin
    [J]. CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (03) : 397 - 408
  • [4] Residual Module and Multi-scale Feature Attention Module for Exudate Segmentation
    Peng, Haoyue
    Zheng, Shibao
    Li, Xinzhe
    Yang, Zhao
    [J]. 2018 INTERNATIONAL CONFERENCE ON SENSOR NETWORKS AND SIGNAL PROCESSING (SNSP 2018), 2018, : 111 - 117
  • [5] A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation
    Yang, Dan
    Liu, Guoru
    Ren, Mengcheng
    Xu, Bin
    Wang, Jiao
    [J]. ENTROPY, 2020, 22 (08)
  • [6] A Multi-Scale Attention Fusion Network for Retinal Vessel Segmentation
    Wang, Shubin
    Chen, Yuanyuan
    Yi, Zhang
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [7] Semantic Segmentation Method Based on Residual and Multi-Scale Feature Fusion
    Xiu, Chunbo
    Su, Huan
    Su, Xuemiao
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2078 - 2083
  • [8] A Novel Hybridoma Cell Segmentation Method Based on Multi-Scale Feature Fusion and Dual Attention Network
    Lu, Jianfeng
    Ren, Hangpeng
    Shi, Mengtao
    Cui, Chen
    Zhang, Shanqing
    Emam, Mahmoud
    Li, Li
    [J]. ELECTRONICS, 2023, 12 (04)
  • [9] Retinal Vessel Segmentation Method Based on Multi-Scale Attention Analytic Network
    Luo Wenjie
    Han Guoqing
    Tian Xuedong
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [10] Attention-Guided Deep Neural Network With Multi-Scale Feature Fusion for Liver Vessel Segmentation
    Yan, Qingsen
    Wang, Bo
    Zhang, Wei
    Luo, Chuan
    Xu, Wei
    Xu, Zhengqing
    Zhang, Yanning
    Shi, Qinfeng
    Zhang, Liang
    You, Zheng
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (07) : 2629 - 2642