Analytical and numerical insights into wildfire dynamics: Exploring the advection-diffusion-reaction model

被引:1
|
作者
Reisch, Cordula [1 ]
Navas-Montilla, Adrian [2 ,5 ]
Oezgen-Xian, Ilhan [3 ,4 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Partial Differential Equat, Braunschweig, Germany
[2] Univ Zaragoza, Aragon Inst Engn Res I3A, Fluid Dynam Technol Grp, Zaragoza, Spain
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geoecol, Theoret Ecohydrol Lab, Braunschweig, Germany
[4] Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, Berkeley, CA USA
[5] Univ Zaragoza, Aragon Inst Engn Res I3A, C-Mariano Esquillor s-n, Zaragoza 50018, Spain
关键词
Wildfire propagation; Advection-diffusion-reaction equation; Dynamical systems; Hierarchical model family; WILDLAND FIRE MODEL; SIMULATION; PROPAGATION;
D O I
10.1016/j.camwa.2024.01.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Understanding the dynamics of wildfire is crucial for developing management and intervention strategies. Mathematical and computational models can be used to improve our understanding of wildfire processes and dynamics. This paper presents a systematic study of a widely used advection-diffusion-reaction wildfire model with non-linear coupling. The importance of single mechanisms is discovered by analysing hierarchical submodels. Numerical simulations provide further insight into the dynamics. As a result, the influence of wind and model parameters such as the bulk density or the heating value on the wildfire propagation speed and the remaining biomass after the burn are assessed. Linearisation techniques for a reduced model provide surprisingly good estimates for the propagation speed in the full model.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 50 条
  • [21] A quasi-analytical approach to the advection-diffusion-reaction problem, using operator splitting
    Verrall, D. P.
    Read, W. W.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (02) : 1588 - 1598
  • [22] DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DIFFUSION-REACTION PROBLEMS
    Ayuso, Blanca
    Marini, L. Donatella
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 1391 - 1420
  • [23] An Efficient Numerical Method for Fractional Advection-Diffusion-Reaction Problem with RLC Fractional Derivative
    Maji, Sandip
    Natesan, Srinivasan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [24] Solution of advection-diffusion-reaction problems on a sphere: High-resolution numerical experiments
    Skiba, Yuri N.
    Cruz-Rodriguez, Roberto C.
    Filatov, Denis M.
    ATMOSFERA, 2023, 37 : 259 - 272
  • [25] Dependence of advection-diffusion-reaction on flow coherent structures
    Tang, Wenbo
    Luna, Christopher
    PHYSICS OF FLUIDS, 2013, 25 (10)
  • [26] Behaviour of advection-diffusion-reaction processes with forcing terms
    Sari, Murat
    Tahir, Shko Ali
    Bouhamidi, Abderrahman
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (02) : 233 - 252
  • [27] Regularity and wave study of an advection-diffusion-reaction equation
    Akgul, Ali
    Ahmed, Nauman
    Shahzad, Muhammad
    Baber, Muhammad Zafarullah
    Iqbal, Muhammad Sajid
    Chan, Choon Kit
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] Recursive POD Expansion for the Advection-Diffusion-Reaction Equation
    Azaiez, M.
    Chacon Rebollo, T.
    Perracchione, E.
    Vega, J. M.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (05) : 1556 - 1578
  • [29] The LEM exponential integrator for advection-diffusion-reaction equations
    Caliari, Marco
    Vianello, Marco
    Bergamaschi, Luca
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 210 (1-2) : 56 - 63
  • [30] Numerical Computation of a Water-Quality Model with Advection-Diffusion-Reaction Equation Using an Upwind Implicit Scheme
    Phosri, Piyada
    Pochai, Nopparat
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (01): : 187 - 196