Analytical and numerical insights into wildfire dynamics: Exploring the advection-diffusion-reaction model

被引:1
|
作者
Reisch, Cordula [1 ]
Navas-Montilla, Adrian [2 ,5 ]
Oezgen-Xian, Ilhan [3 ,4 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Partial Differential Equat, Braunschweig, Germany
[2] Univ Zaragoza, Aragon Inst Engn Res I3A, Fluid Dynam Technol Grp, Zaragoza, Spain
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Geoecol, Theoret Ecohydrol Lab, Braunschweig, Germany
[4] Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, Berkeley, CA USA
[5] Univ Zaragoza, Aragon Inst Engn Res I3A, C-Mariano Esquillor s-n, Zaragoza 50018, Spain
关键词
Wildfire propagation; Advection-diffusion-reaction equation; Dynamical systems; Hierarchical model family; WILDLAND FIRE MODEL; SIMULATION; PROPAGATION;
D O I
10.1016/j.camwa.2024.01.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Understanding the dynamics of wildfire is crucial for developing management and intervention strategies. Mathematical and computational models can be used to improve our understanding of wildfire processes and dynamics. This paper presents a systematic study of a widely used advection-diffusion-reaction wildfire model with non-linear coupling. The importance of single mechanisms is discovered by analysing hierarchical submodels. Numerical simulations provide further insight into the dynamics. As a result, the influence of wind and model parameters such as the bulk density or the heating value on the wildfire propagation speed and the remaining biomass after the burn are assessed. Linearisation techniques for a reduced model provide surprisingly good estimates for the propagation speed in the full model.
引用
收藏
页码:179 / 198
页数:20
相关论文
共 50 条
  • [1] Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 70 : 89 - 101
  • [2] Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation
    Maji, Sandip
    Natesan, Srinivasan
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 549 - 570
  • [3] An advection-diffusion-reaction model for coffee percolation
    Egidi, Nadaniela
    Giacomini, Josephin
    Maponi, Pierluigi
    Perticarini, Alessia
    Cognigni, Luca
    Fioretti, Lauro
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [4] Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
    Li, Zhen
    Yazdani, Alireza
    Tartakovsky, Alexandre
    Karniadakis, George Em
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (01):
  • [5] A variational multiscale model for the advection-diffusion-reaction equation
    Houzeaux, Guillaume
    Eguzkitza, Beatriz
    Vazquez, Mariano
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2009, 25 (07): : 787 - 809
  • [6] Efficient numerical treatment of nonlinearities in the advection-diffusion-reaction equations
    Erdogan, Utku
    Sari, Murat
    Kocak, Huseyin
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (01) : 132 - 145
  • [7] Exploring well-posedness and asymptotic behavior in an Advection-Diffusion-Reaction (ADR) model
    Elghandouri, Mohammed
    Ezzinbi, Khalil
    Saidi, Lamiae
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462
  • [8] Hierarchical Model Reduction for Advection-Diffusion-Reaction Problems
    Ern, A.
    Perotto, S.
    Veneziani, A.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 703 - +
  • [9] Thermal-image-based wildfire spread simulation using a linearized model of an advection-diffusion-reaction equation
    Kim, Eun Heui
    Tran, Minh N.
    Yang, Karen
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2012, 88 (09): : 1093 - 1115
  • [10] Dimension reduction numerical closure method for advection-diffusion-reaction systems
    Tartakovsky, A. M.
    Scheibe, T. D.
    ADVANCES IN WATER RESOURCES, 2011, 34 (12) : 1616 - 1626