The degenerate variable metric proximal point algorithm and adaptive stepsizes for primal-dual Douglas-Rachford

被引:0
|
作者
Lorenz, Dirk A. [1 ]
Marquardt, Jannis [2 ]
Naldi, Emanuele [1 ]
机构
[1] TU Braunschweig, Inst Anal & Algebra, Braunschweig, Germany
[2] TU Braunschweig, Inst Partial Differential Equat, Braunschweig, Germany
关键词
Preconditioned proximal point algorithm; varying preconditioners; Douglas-Rachford method; non-stationary primal-dual method; adaptive stepsizes; ALTERNATING DIRECTION METHOD; CONVERGENCE; PARAMETERS; OPERATORS; SUM;
D O I
10.1080/02331934.2024.2325552
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, the degenerate preconditioned proximal point algorithm will be combined with the idea of varying preconditioners leading to the degenerate variable metric proximal point algorithm. The weak convergence of the resulting iteration will be proven. From the perspective of the degenerate variable metric proximal point algorithm, a version of the primal-dual Douglas-Rachford method with varying preconditioners will be derived and a proof of its weak convergence which is based on the previous results for the proximal point algorithm, is provided, too. After that, we derive a heuristic on how to choose those varying preconditioners in order to increase the convergence speed of the method.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] On the equivalence of the primal-dual hybrid gradient method and Douglas-Rachford splitting
    O'Connor, Daniel
    Vandenberghe, Lieven
    [J]. MATHEMATICAL PROGRAMMING, 2020, 179 (1-2) : 85 - 108
  • [2] On Douglas-Rachford splitting that generally fails to be a proximal mapping: a degenerate proximal point analysis
    Xue, Feng
    [J]. OPTIMIZATION, 2024, 73 (06) : 1981 - 1992
  • [3] Proximal Point Algorithm, Douglas-Rachford Algorithm and Alternating Projections: A Case Study
    Bauschke, Heinz H.
    Dao, Minh N.
    Noll, Dominikus
    Phan, Hung M.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2016, 23 (01) : 237 - 261
  • [4] PRECONDITIONED DOUGLAS-RACHFORD TYPE PRIMAL-DUAL METHOD FOR SOLVING COMPOSITE MONOTONE INCLUSION PROBLEMS WITH APPLICATIONS
    Yang, Yixuan
    Tang, Yuchao
    Wen, Meng
    Zeng, Tieyong
    [J]. INVERSE PROBLEMS AND IMAGING, 2021, 15 (04) : 787 - 825
  • [5] Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm with Applications
    Huang, Wenli
    Tang, Yuchao
    Wen, Meng
    Li, Haiyang
    [J]. MATHEMATICS, 2022, 10 (22)
  • [6] Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes
    Jiang, Fan
    Zhang, Zhiyuan
    He, Hongjin
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (04) : 821 - 846
  • [7] Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes
    Fan Jiang
    Zhiyuan Zhang
    Hongjin He
    [J]. Journal of Global Optimization, 2023, 85 : 821 - 846
  • [8] ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS
    ECKSTEIN, J
    BERTSEKAS, DP
    [J]. MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 293 - 318
  • [9] ADAPTIVE DOUGLAS-RACHFORD SPLITTING ALGORITHM FOR THE SUM OF TWO OPERATORS
    Dao, Minh N.
    Phan, Hung M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2697 - 2724
  • [10] On the equivalence of the primal-dual hybrid gradient method and Douglas–Rachford splitting
    Daniel O’Connor
    Lieven Vandenberghe
    [J]. Mathematical Programming, 2020, 179 : 85 - 108