Simultaneous Calibration of European Option Volatility and Fractional Order under the Time Fractional Vasicek Model

被引:0
|
作者
Du, Yunkang [1 ]
Xu, Zuoliang [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
基金
中国国家自然科学基金;
关键词
time fractional Vasicek model; calibration problem; regularization; European option; DIFFERENCE SCHEME;
D O I
10.3390/a17020054
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we recover the European option volatility function sigma(t) of the underlying asset and the fractional order alpha of the time fractional derivatives under the time fractional Vasicek model. To address the ill-posed nature of the inverse problem, we employ Tikhonov regularization. The Alternating Direction Multiplier Method (ADMM) is utilized for the simultaneous recovery of the parameter alpha and the volatility function sigma(t). In addition, the existence of a solution to the minimization problem has been demonstrated. Finally, the effectiveness of the proposed approach is verified through numerical simulation and empirical analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A fractional calculus interpretation of the fractional volatility model
    Vilela Mendes, R.
    NONLINEAR DYNAMICS, 2009, 55 (04) : 395 - 399
  • [22] A fractional calculus interpretation of the fractional volatility model
    R. Vilela Mendes
    Nonlinear Dynamics, 2009, 55
  • [23] Maximum Likelihood Estimation for the Fractional Vasicek Model
    Tanaka, Katsuto
    Xiao, Weilin
    Yu, Jun
    ECONOMETRICS, 2020, 8 (03) : 1 - 28
  • [24] Valuation of European option under uncertain volatility model
    Sabahat Hassanzadeh
    Farshid Mehrdoust
    Soft Computing, 2018, 22 : 4153 - 4163
  • [25] Valuation of European option under uncertain volatility model
    Hassanzadeh, Sabahat
    Mehrdoust, Farshid
    SOFT COMPUTING, 2018, 22 (12) : 4153 - 4163
  • [26] THE FRACTIONAL VOLATILITY MODEL AND ROUGH VOLATILITY
    Mendes, R. Vilela
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2023, 26 (02N03)
  • [27] Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps
    Wei-Guo Zhang
    Zhe Li
    Yong-Jun Liu
    Yue Zhang
    Computational Economics, 2021, 58 : 483 - 515
  • [28] Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps
    Zhang, Wei-Guo
    Li, Zhe
    Liu, Yong-Jun
    Zhang, Yue
    COMPUTATIONAL ECONOMICS, 2021, 58 (02) : 483 - 515
  • [29] Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility
    Chang, Ying
    Wang, Yiming
    Zhang, Sumei
    MATHEMATICS, 2021, 9 (02) : 1 - 10
  • [30] Finite-time simultaneous estimation of aortic blood flow and differentiation order for fractional-order arterial Windkessel model calibration
    Bahloul, Mohamed A.
    Benencase, Marcelo
    Belkhatir, Zehor
    Kirati, Taous-Meriem Laleg
    IFAC PAPERSONLINE, 2021, 54 (15): : 538 - 543