Dengzhan Shengmai capsule attenuates cardiac fibrosis in post-myocardial infarction rats by regulating LTBP2 and TGF-β1/Smad3 pathway

被引:15
|
作者
Wang, Maolin [1 ]
Wang, Menglan [1 ]
Zhao, Jie [2 ]
Xu, He [1 ]
Xi, Yujie [2 ]
Yang, Hongjun [1 ,2 ]
机构
[1] China Acad Chinese Med Sci, Inst Chinese Mat Med, Beijing 100700, Peoples R China
[2] China Acad Chinese Med Sci, Expt Res Ctr, Beijing 100700, Peoples R China
基金
中国国家自然科学基金;
关键词
Dengzhan Shengmai capsule; Cardiac fibrosis; Cardiac fibroblasts; LTBP2; TGF-beta; 1/Smad3; PHARMACOKINETICS;
D O I
10.1016/j.phymed.2023.154849
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Cardiac fibrosis contributes to myocardial remodeling after myocardial infarction (MI), which may facilitate the progression to end-stage heart failure. Dengzhan Shengmai capsule (DZSMC), a traditional Chinese formula derived from Shen-mai powder, has shown remarkable therapeutic effects against cardiovascular diseases. However, the effect of DZSMC on cardiac fibrosis and its potential mechanism are ill-defined. Purpose: To evaluate the effects of DZSMC on cardiac fibrosis after myocardial infarction (MI) and investigate its underlying mechanism. Method: In vivo, MI rat models were established by permanently ligation of left anterior descending coronary arteries (LAD) and then were intragastrically treated with DZSMC or captopril for 5 weeks. Ex vivo, an everted intestinal sac model was used to study the intestinal absorption components of DZSMC, which were further identified through an ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method. In vitro, a myocardium fibrotic model was constructed by stimulating primary cardiac fibroblasts (CFs) with 1 mu M Ang II. Subsequently, the absorbent solution of DZSMC from the intestinal sac was performed on the cell models to further elucidate its anti-fibrotic effects and underling mechanism. Results: In vivo results showed that DZSMC significantly improved cardiac function and inhibited pathological myocardial fibrosis in post-MI rats in a dose dependent manner. Histological analysis and western blot results demonstrated that DZSMC treatment significantly reduced the expression of extracellular matrix (ECM)-related proteins, including LTBP2, TGF-beta R1, Smad3 and pSmad3, in myocardial tissue of MI rats. Ex vivo results showed that 18 absorbed components were identified, mainly consisting of phenolic acids, flavonoids and lignans, which may be responsible for the anti-fibrotic effects. Further in vitro results validated that DZSMC attenuated myocardial fibrosis by suppressing the expression of LTBP2, TGF-beta 1 and pSmad3. Conclusion: DZSMC ameliorates cardiac function and alleviates cardiac fibrosis, which may be mediated by inhibition of CFs activation and reduction of excessive ECM deposition via LTBP2 and TGF-beta 1/Smad3 pathways.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Qiliqiangxin Attenuates Cardiac Remodeling via Inhibition of TGF-β1/Smad3 and NF-κB Signaling Pathways in a Rat Model of Myocardial Infarction
    Han, Anbang
    Lu, Yingdong
    Zheng, Qi
    Zhang, Jian
    Zhao, YiZhou
    Zhao, Mingjing
    Cui, Xiangning
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 45 (05) : 1797 - 1806
  • [42] Isoliensinine Attenuates Renal Fibrosis and Inhibits TGF-β1/Smad2/3 Signaling Pathway in Spontaneously Hypertensive Rats
    Yao, Mengying
    Lian, Dawei
    Wu, Meizhu
    Zhou, Yuting
    Fang, Yi
    Zhang, Siyu
    Zhang, Wenqiang
    Yang, Yanyan
    Li, Renfeng
    Chen, Hong
    Chen, Youqin
    Shen, Aling
    Peng, Jun
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2023, 17 : 2749 - 2762
  • [43] Pirfenidone alleviates cardiac fibrosis induced by pressure overload via inhibiting TGF-β1/Smad3 signalling pathway
    Li, Na
    Hang, Weijian
    Shu, Hongyang
    Zhou, Ning
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2022, 26 (16) : 4548 - 4555
  • [44] PFKFB3 Inhibitor 3PO Reduces Cardiac Remodeling after Myocardial Infarction by Regulating the TGF-β1/SMAD2/3 Pathway
    Yang, Qian
    Zong, Xiao
    Zhuang, Lingfang
    Pan, Roubai
    Tudi, Xierenayi
    Fan, Qin
    Tao, Rong
    BIOMOLECULES, 2023, 13 (07)
  • [45] Role of miR-133a in regulating TGF-β1 signaling pathway in myocardial fibrosis after acute myocardial infarction in rats
    Yu, B-T
    Yu, N.
    Wang, Y.
    Zhang, H.
    Wan, K.
    Sun, X.
    Zhang, C-S
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (19) : 8588 - 8597
  • [46] Leech extract alleviates idiopathic pulmonary fibrosis by TGF-β1/Smad3 signaling pathway
    Zhang, Yin
    Lu, Yong-Bo
    Zhu, Wei-Jie
    Gong, Xiao-Xi
    Qian, Rui
    Lu, Yi-Jing
    Li, Yu
    Yao, Wei-Feng
    Bao, Bei-Hua
    Zhang, Yi
    Zhang, Li
    Cheng, Fang -Fang
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 324
  • [47] Sirt1 Activation Ameliorates Renal Fibrosis by Inhibiting the TGF-β/Smad3 Pathway
    Huang, Xin-Zhong
    Wen, Donghai
    Zhang, Min
    Xie, Qionghong
    Ma, Leting
    Guan, Yi
    Ren, Yueheng
    Chen, Jing
    Hao, Chuan-Ming
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2014, 115 (05) : 996 - 1005
  • [48] Icariin improves cardiac function and remodeling via the TGF-β1/Smad signaling pathway in rats following myocardial infarction
    Jia, Ji
    Zhao, Xing-an
    Tao, Si-ming
    Wang, Jun-wen
    Zhang, Rong-liang
    Dai, Hua-lei
    Zhang, Xin-jin
    Han, Ming-hua
    Yang, Bei
    Li, Yu
    Li, Jin-tao
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2023, 28 (01)
  • [49] Icariin improves cardiac function and remodeling via the TGF-β1/Smad signaling pathway in rats following myocardial infarction
    Ji Jia
    Xing-an Zhao
    Si-ming Tao
    Jun-wen Wang
    Rong-liang Zhang
    Hua-lei Dai
    Xin-jin Zhang
    Ming-hua Han
    Bei Yang
    Yu Li
    Jin-tao Li
    European Journal of Medical Research, 28
  • [50] Inhibition of AHNAK nucleoprotein 2 alleviates pulmonary fibrosis by downregulating the TGF-β1/Smad3 signaling pathway
    Zhu, Dongyi
    Zhang, Qian
    Li, Qinchuan
    Wang, Guangxue
    Guo, Zhongliang
    JOURNAL OF GENE MEDICINE, 2022, 24 (09):