Automated detection of internal fruit rot in Hass avocado via deep learning-based semantic segmentation of X-ray images

被引:13
|
作者
Matsui, Takahiro [1 ]
Sugimori, Hiroyuki [2 ]
Koseki, Shige [1 ]
Koyama, Kento [1 ]
机构
[1] Hokkaido Univ, Grad Sch Agr Sci, Kita 9, Nishi 9, Kita Ku, Sapporo 0608589, Japan
[2] Hokkaido Univ, Fac Hlth Sci, Kita 12, Nishi 5, Kita Ku, Sapporo 0600812, Japan
关键词
Avocado rot; Non-destructive inspection; Fungal infection; X-ray imaging; Deep learning; Semantic segmentation; CLASSIFICATION; ALGORITHM;
D O I
10.1016/j.postharvbio.2023.112390
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Internal rot of avocado fruit (Persea americana), attributable to fungal infection, occurs at the end of the ripening process and causes only minor changes in the appearance and texture of the fruit surface. Manual inspection of rot by sight and touch commonly conducted in countries importing avocado fruit is time-consuming, laborintensive, and subjective. In this context, X-ray line scanning has been proven as an advantageous method of fruit rot detection because of its speed of data acquisition and the indication of internal rot by bright regions in associated images. However, some fruit internal disorders exhibit only poor changes in contrast, resulting in low detectability by traditional image processing. This study aimed to test the effectiveness of a detection model using deep learning-based semantic segmentation in identifying two types of fruit rot, stem-end and body rot, in Hass avocados. Therefore, U-net+ + was trained and validated via 5-fold cross-validation to classify every pixel in an X-ray image as either infected or not. Then, each X-ray image was binarily classified based on either the presence or absence of internal fruit rots, achieving an accuracy of 0.98. Furthermore, the percentage of infected area was quantified with a root mean squared error (RMSE) of 3.15 %. Lastly, the proposed model detected both stem-end and body rot as well as rot along low-contrast fruit edges. The results of this study indicate that the proposed automatic inspection system using deep learning-based X-ray image analysis can effectively detect internal rot in Hass avocado fruit. This non-destructive, objective detection model can therefore increase efficiency and reduce misclassification in post-harvest avocado inspection. Furthermore, deep learning-based X-ray imaging has potential for applications in fruit inspection for internal cavities attributable to diseases or wounds.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Deep learning-based semantic segmentation of remote sensing images: a review
    Lv, Jinna
    Shen, Qi
    Lv, Mingzheng
    Li, Yiran
    Shi, Lei
    Zhang, Peiying
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2023, 11
  • [32] Research on Deep Learning-based Semantic Segmentation Algorithm for UAV Images
    Yan, Qiang
    Cheng, Guojian
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1579 - 1584
  • [33] Robust deep learning-based semantic organ segmentation in hyperspectral images
    Seidlitz, Silvia
    Sellner, Jan
    Odenthal, Jan
    Oezdemir, Berkin
    Studier-Fischer, Alexander
    Knoedler, Samuel
    Ayala, Leonardo
    Adler, Tim J.
    Kenngott, Hannes G.
    Tizabi, Minu
    Wagner, Martin
    Nickel, Felix
    Mueller-Stich, Beat P.
    Maier-Hein, Lena
    MEDICAL IMAGE ANALYSIS, 2022, 80
  • [34] Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images
    Jan Matula
    Veronika Polakova
    Jakub Salplachta
    Marketa Tesarova
    Tomas Zikmund
    Marketa Kaucka
    Igor Adameyko
    Jozef Kaiser
    Scientific Reports, 12
  • [35] Machine Learning and Deep Learning-Based Detection and Analysis of COVID-19 in Chest X-Ray Images
    Kumar, Kunal
    Shokeen, Harsh
    Gambhir, Shalini
    Kumar, Ashwani
    Saraswat, Amar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 151 - 160
  • [36] Resolving complex cartilage structures in developmental biology via deep learning-based automatic segmentation of X-ray computed microtomography images
    Matula, Jan
    Polakova, Veronika
    Salplachta, Jakub
    Tesarova, Marketa
    Zikmund, Tomas
    Kaucka, Marketa
    Adameyko, Igor
    Kaiser, Jozef
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [37] Deep Learning Based Automated Chest X-ray Abnormalities Detection
    Parikh, Vraj
    Shah, Jainil
    Bhatt, Chintan
    Corchado, Juan M.
    Dac-Nhuong Le
    AMBIENT INTELLIGENCE-SOFTWARE AND APPLICATIONS-13TH INTERNATIONAL SYMPOSIUM ON AMBIENT INTELLIGENCE, 2023, 603 : 1 - 12
  • [38] The defect detection for X-ray images based on a new lightweight semantic segmentation network
    Yi, Xin
    Peng, Chen
    Zhang, Zhen
    Xiao, Liang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (04) : 4178 - 4195
  • [39] Explainable artificial intelligence in deep learning-based detection of aortic elongation on chest X-ray images
    Ribeiro, Estela
    Cardenas, Diego A. C.
    Dias, Felipe M.
    Krieger, Jose E.
    Gutierrez, Marco A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (05): : 524 - 534
  • [40] Deep Learning-Based Computer-Aided Pneumothorax Detection Using Chest X-ray Images
    Malhotra, Priyanka
    Gupta, Sheifali
    Koundal, Deepika
    Zaguia, Atef
    Kaur, Manjit
    Lee, Heung-No
    SENSORS, 2022, 22 (06)