Improved Versions of Some Furstenberg Type Slicing Theorems for Self-Affine Carpets

被引:2
|
作者
Algom, Amir [1 ]
Wu, Meng [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Oulu, Dept Math Sci, POB 3000, Oulu 90014, Finland
基金
芬兰科学院;
关键词
DIMENSION; CONJECTURE;
D O I
10.1093/imrn/rnab318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a Bedford-McMullen carpet defined by independent integer exponents. We prove that for every line l subset of R-2 not parallel to the major axes, dim(H)(l boolean AND F) <= max {0, dim(H) f/dim*F center dot (dim*F-1)} and dim(P)(l boolean AND F) <= max{0, dim(P)F/dim*F center dot (dim*F-1)}, where dim* is Furstenberg's star dimension (maximal dimension of microsets). This improves the state-of-the-art results on Furstenberg type slicing Theorems for affine invariant carpets.
引用
收藏
页码:2304 / 2343
页数:40
相关论文
共 50 条
  • [31] Properties of Some Overlapping Self-Similar and Some Self-Affine Measures
    J. Neunhauserer
    Acta Mathematica Hungarica, 2001, 92 : 143 - 161
  • [32] Properties of some overlapping self-similar and some self-affine measures
    Neunhäuserer, J
    ACTA MATHEMATICA HUNGARICA, 2001, 92 (1-2) : 143 - 161
  • [33] On the spectra of Sierpinski-type self-affine measures
    Deng, Qi-Rong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (12) : 4426 - 4442
  • [34] Spectrality of Sierpinski-type self-affine measures
    Lu, Zheng-Yi
    Dong, Xin-Han
    Liu, Zong-Sheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (03)
  • [35] Determining pure discrete spectrum for some self-affine tilings
    Lee, Jeong-Yup, 1600, Discrete Mathematics and Theoretical Computer Science (16):
  • [36] Multifractal analysis of Birkhoff averages for some self-affine IFS
    Jordan, Thomas
    Simon, Karoly
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2007, 22 (04): : 469 - 483
  • [37] The connectedness of some two-dimensional self-affine sets
    Ma, Yong
    Dong, Xin-Han
    Deng, Qi-Rong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 1604 - 1616
  • [38] SOME PHYSICAL-PROPERTIES OF SELF-AFFINE ROUGH SURFACES
    ROUX, S
    SCHMITTBUHL, J
    VILOTTE, JP
    HANSEN, A
    EUROPHYSICS LETTERS, 1993, 23 (04): : 277 - 282
  • [39] Assouad-type dimensions of overlapping self-affine sets
    Fraser, Jonathan M.
    Rutar, Alex
    ANNALES FENNICI MATHEMATICI, 2024, 49 (01): : 3 - 21
  • [40] Spectrality of generalized Sierpinski-type self-affine measures
    Liu, Jing-Cheng
    Zhang, Ying
    Wang, Zhi-Yong
    Chen, Ming-Liang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 129 - 148