Improved Versions of Some Furstenberg Type Slicing Theorems for Self-Affine Carpets

被引:2
|
作者
Algom, Amir [1 ]
Wu, Meng [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Oulu, Dept Math Sci, POB 3000, Oulu 90014, Finland
基金
芬兰科学院;
关键词
DIMENSION; CONJECTURE;
D O I
10.1093/imrn/rnab318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a Bedford-McMullen carpet defined by independent integer exponents. We prove that for every line l subset of R-2 not parallel to the major axes, dim(H)(l boolean AND F) <= max {0, dim(H) f/dim*F center dot (dim*F-1)} and dim(P)(l boolean AND F) <= max{0, dim(P)F/dim*F center dot (dim*F-1)}, where dim* is Furstenberg's star dimension (maximal dimension of microsets). This improves the state-of-the-art results on Furstenberg type slicing Theorems for affine invariant carpets.
引用
收藏
页码:2304 / 2343
页数:40
相关论文
共 50 条