Electronic optimization of heterostructured MoS2/Ni3S2 by P doping as bifunctional electrocatalysts for water splitting

被引:11
|
作者
Li, Wenxian [1 ,2 ,3 ]
Xing, Xin [1 ]
Ge, Riyue [1 ,4 ]
Zhang, Yanning [1 ]
Sha, Simiao [1 ]
Li, Yiran [1 ]
Cairney, Julie M. [5 ,6 ]
Zheng, Rongkun [7 ]
Li, Sean [2 ,3 ]
Liu, Bin [1 ]
机构
[1] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[2] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[3] UNSW, UNSW Mat & Mfg Futures Inst, Sydney, NSW 2052, Australia
[4] Hong Kong Polytech Univ Hung Hom, Sch Fash & Text, Hong Kong 999077, Peoples R China
[5] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会; 中国博士后科学基金;
关键词
Heterostructure; Doping; Electronic structure; Overall water splitting; HYDROGEN EVOLUTION REACTION; HIGHLY EFFICIENT; HIGH-PERFORMANCE; MOS2; NANOSHEETS; INTERFACE; NI3S2; NI; CATALYST; GENERATION; GRAPHENE;
D O I
10.1016/j.susmat.2023.e00743
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
MoS2 is an excellent catalyst for hydrogen evolution reaction (HER) because of its close proximity to the optimum hydrogen adsorption free energy (AGH*). However, poor oxygen evolution reaction (OER) intrinsic activity, insufficient active sites, and poor conductivity hinder its application as a bifunctional electrocatalyst. Here, Ni3S2 is combined with MoS2 forming MoS2/Ni3S2 heterostructure due to its intrinsic OER activity and P is chosen as an anion dopant to optimize AGH* due to its near-thermoneutral H adsorption to explore the bifunctional performance of MoS2 based nanocomposites. The electronic configurations of Mo, Ni, and S on the interface are modulated by P doping, which optimizes their adsorption/desorption ability of intermediates. The synergistic effect of anion doping and heterostructure induces excellent catalytic activity in P40-MoS2/Ni3S2-5 (Mo to S molar ratio of 1:5 and 40 mg P dopants) with overpotentials of 142 mV for HER and 278 mV for OER at 100 mA cm-2 in 1.0 M KOH solution. The voltage of overall water splitting is 1.76 V using P40-MoS2/Ni3S2-5 as the anode and cathode. This work elucidates a method of optimizing the electronic structure by doping P anion in heterointerface, providing an avenue to boost the catalytic activity of non-noble metal-based catalysts.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] MoS2/Ni3S2 nanorod arrays well-aligned on Ni foam: a 3D hierarchical efficient bifunctional catalytic electrode for overall water splitting
    Zhang, Nan
    Lei, Junyu
    Xie, Jianpeng
    Huang, Haiyan
    Yu, Ying
    RSC ADVANCES, 2017, 7 (73) : 46286 - 46296
  • [22] Synergism of Interface and Electronic Effects: Bifunctional N-Doped Ni3S2/N-Doped MoS2 Hetero-Nanowires for Efficient Electrocatalytic Overall Water Splitting
    Xu, You
    Chai, Xingjie
    Ren, Tianlun
    Yu, Hongjie
    Yin, Shuli
    Wang, Ziqiang
    Li, Xiaonian
    Wang, Liang
    Wang, Hongjing
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (70) : 16074 - 16080
  • [23] Self-supported molybdenum doping Ni3S2 nanoneedles as efficient bifunctional catalysts for overall water splitting
    Li, Jinhui
    Yang, Zhi
    Lin, Yu
    Wang, Jinlei
    Jiao, Feixiang
    Gong, Yaqiong
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (20) : 8578 - 8586
  • [24] Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity
    Zhang, Jian
    Wang, Tao
    Pohl, Darius
    Rellinghaus, Bernd
    Dong, Renhao
    Liu, Shaohua
    Zhuang, Xiaodong
    Feng, Xinliang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (23) : 6702 - 6707
  • [25] Superhydrophilic MoS2–Ni3S2 nanoflake heterostructures grown on 3D Ni foam as an efficient electrocatalyst for overall water splitting
    Licheng Huang
    Lishuang Xu
    Ying Yang
    Hui Yu
    Haiyan Tao
    Dan Li
    Xiangting Dong
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 6607 - 6617
  • [26] In-Situ Sulfuration of Ni(OH)2 to Heterostructured Ni3S2/Ni(OH)2@Ni Catalyst for Efficient Water Splitting
    Dai, Xinxin
    Tang, Zhen
    Yan, Xinyuan
    Tao, Shiyi
    Wang, Shanshan
    Liu, Yi
    Cao, Jiafeng
    Deng, Xiaolong
    Bo, Xin
    CHEMISTRY-AN ASIAN JOURNAL, 2025, 20 (03)
  • [27] Controllable synthesis of NiO/Ni3S2 hybrid arrays as efficient electrocatalysts for water splitting
    Du, Xiaoqiang
    Wang, Qibin
    Zhang, Xiaoshuang
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (22) : 18201 - 18207
  • [28] Ni(OH)2 Templated Synthesis of Ultrathin Ni3S2 Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting
    Jin, Chunqiao
    Zhai, Pengbo
    Wei, Yi
    Chen, Qian
    Wang, Xingguo
    Yang, Weiwei
    Xiao, Jing
    He, Qianqian
    Liu, Qingyun
    Gong, Yongji
    SMALL, 2021, 17 (33)
  • [29] Bimetallic-metal organic framework-derived Ni3S2/MoS2 hollow spheres as bifunctional electrocatalyst for highly efficient and stable overall water splitting
    Kim, Seungok
    Min, Kyeongseok
    Kim, Hyeri
    Yoo, Rimhwan
    Shim, Sang Eun
    Lim, Dongwook
    Baeck, Sung-Hyeon
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (13) : 8165 - 8176
  • [30] Heterostructured Ni(OH)2/Ni3S2 Supported on Ni Foam as Highly Efficient and Durable Bifunctional Electrodes for Overall Water Electrolysis
    Li, Jingwei
    Jiang, Lijuan
    He, Shuai
    Wei, Licheng
    Zhou, Rongfu
    Zhang, Jinming
    Yuan, Dingsheng
    Jiang, San Ping
    ENERGY & FUELS, 2019, 33 (11) : 12052 - 12062