Porous polypyrrole-derived carbon nanotubes as a cathode material for zinc-ion hybrid supercapacitors

被引:21
|
作者
Huo, Jinghao [1 ]
Wang, Xin [1 ]
Zhang, Xinyi [1 ]
Zhang, Lifeng [1 ]
Yue, Gentian [2 ,3 ]
Guo, Shouwu [1 ,4 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Green Preparat & Functionalizat In, Inst Frontier Sci & Technol Transfer, Xian 710021, Peoples R China
[2] Henan Univ, Henan Key Lab Photovolta Mat, Kaifeng 475004, Peoples R China
[3] Henan Univ, Lab Low Dimens Mat Sci, Kaifeng 475004, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Elect Engn, Shanghai 200240, Peoples R China
关键词
Zinc-ion hybrid capacitors; Cathode material; Polypyrrole-derived carbon nanotubes; High specific surface area; Porous structure; O/N-codoping; SURFACE-AREA; PERFORMANCE; LIFE;
D O I
10.1016/j.est.2023.108925
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aqueous zinc-ion hybrid supercapacitors (ZISCs) are a kind of energy storage device with promising applications due to their easy assembly, low cost, safety and reliability. Polypyrrole (PPy)-derived carbon is usually used as a cathode material for ZISCs with N-doping originating from the polymer structure and simple preparation. Herein, the porous PPy-derived carbon nanotubes (PCNTs) are prepared by calcination and KOH activation. The microstructure and physicochemical properties of PCNTs can be optimized by regulating the mass ratio of KOH to PPy-derived carbon. The high specific surface area (3537 m2 g-1), hierarchical porous structure, and high contents of O/N-codoping (12.02 at.% and 3.39 at.%), the PCNTs process high specific capacity and excellent cyclic stability. ZISCs based-PCNTs cathode and Zn anode obtain a high specific capacity of 387.8 mAh g-1 at a current density of 0.2 Ag-1, superior rate capability (127.2 mAh g-1 at 20 Ag-1), large energy density (151 Wh kg-1), and power density (12.695 kW kg-1). Furthermore, after 10,000 GCD tested at 5 A g-1, the capacity retention of ZISCs is 90.9 %. This study provides a valuable reference for regulating the microstructure of porous carbon derived from other polymers and promoting its application in aqueous ZISCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A UiO-66-NH2 MOF derived N doped porous carbon and ZrO2 composite cathode for zinc-ion hybrid supercapacitors
    Wang, Xiaoqi
    Hong, Hu
    Yang, Shuo
    Bai, Shengchi
    Yang, Rui
    Jin, Xu
    Zhi, Chunyi
    Wang, Bo
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (07) : 2115 - 2124
  • [22] Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors
    Liu, Penggao
    Gao, Yang
    Tan, Yangyang
    Liu, Weifang
    Huang, Yanping
    Yan, Jun
    Liu, Kaiyu
    NANO RESEARCH, 2019, 12 (11) : 2835 - 2841
  • [23] Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors
    Penggao Liu
    Yang Gao
    Yangyang Tan
    Weifang Liu
    Yanping Huang
    Jun Yan
    Kaiyu Liu
    Nano Research, 2019, 12 : 2835 - 2841
  • [24] Waste frying oil derived carbon nano-onions as a cost-effective cathode material for high-voltage zinc-ion hybrid supercapacitors
    Das, Gouri Sankar
    Panigrahi, Rajarshi
    Ghosh, Somnath
    Tripathi, Kumud Malika
    MATERIALS TODAY SUSTAINABILITY, 2024, 25
  • [25] Design of a pseudocapacitive cathode based on polypyrrole-derived carbon tube supported anthraquinone for lithium-ion hybrid capacitors
    Chen, Jiao-Juan
    Fan, Le-Qing
    Wu, Zheng-Xue
    Deng, Xu-Geng
    Tang, Tao
    Yu, Fu-Da
    Huang, Yun-Fang
    Wu, Ji-Huai
    ELECTROCHIMICA ACTA, 2023, 462
  • [26] In-situ activation of resorcinol-furfural resin derived hierarchical porous carbon for supercapacitors and zinc-ion hybrid capacitors
    Tian, Zhiwei
    Yang, Chen
    Zhang, Chunmei
    Han, Xiaoshuai
    Han, Jingquan
    Liu, Kunming
    He, Shuijian
    Duan, Gaigai
    Jian, Shaoju
    Hu, Jiapeng
    Yang, Weisen
    Jiang, Shaohua
    JOURNAL OF ENERGY STORAGE, 2024, 85
  • [27] Amorphous carbon and carbon nanotubes synergistically reinforced with MnO2 as a cathode material for zinc-ion batteries
    Xie, Jiwei
    Liu, Guijing
    Li, Xueming
    Liu, Ziqi
    Sun, Jia
    Gao, Shanmin
    DIAMOND AND RELATED MATERIALS, 2023, 132
  • [28] O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors
    Yu, Juan
    Wang, Lejie
    Peng, Jiaxin
    Jia, Xuefeng
    Zhou, Lijiao
    Yang, Naixing
    Li, Linbo
    IONICS, 2021, 27 (10) : 4495 - 4505
  • [29] O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors
    Juan Yu
    Lejie Wang
    Jiaxin Peng
    Xuefeng Jia
    Lijiao Zhou
    Naixing Yang
    Linbo Li
    Ionics, 2021, 27 : 4495 - 4505
  • [30] Polyacrylonitrile Derived Porous Carbon for Zinc-Ion Hybrid Capacitors with High Energy Density
    Fan, Xiaowen
    Liu, Penggao
    Ouyang, Baixue
    Cai, Ruizheng
    Chen, Xinxin
    Liu, Xicang
    Liu, Weifang
    Wang, Jue
    Liu, Kaiyu
    CHEMELECTROCHEM, 2021, 8 (18) : 3572 - 3578