Target Imaging Using Compressed Sampling in Synthetic Aperture Interferometric Radiometer

被引:0
|
作者
Xu, Yanyu [1 ]
Zhu, Dong [1 ,2 ]
Hu, Fei [1 ,2 ]
Fang, Bo [1 ]
Fu, Peng [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Natl Key Lab Sci & Technol Multispectral Informat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Compressed interferometric radiometer (CIR); compressed sampling (CS); generalized weight; sparse recovery; target imaging; DOPPLER-RADIOMETER; ALGORITHM;
D O I
10.1109/TGRS.2023.3282977
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The target imaging application is significant to various sensing systems, such as radiometers, radars, and infrared. However, high system complexity impedes the application of interferometric radiometers to target imaging tasks to some extent. Specifically for an N-element interferometric radiometer with aperture synthesis technique, complex correlators are of the order of O(N-2), giving rise to the great difficulty of system hardware implementation. In this article, we propose a new compressed interferometric radiometer (CIR) concept for target imaging applications, which exploits the sparsity property of targets in the spatial domain. The CIR target imaging framework mainly adopts the compressive measurement method to acquire partial visibility function samples in the spatial-frequency domain via a proper sparse sampling pattern. Then, these partially observed visibility samples are inverted to image the target contrast information by sparse recovery methods. For the above image recovery process, we propose two novel algorithms named local regional information-based reweighted l1-norm minimization (LRRL1) and local regional convolution-based reweighted l1-norm minimization (LRCRL1). The experiments using simulated and real data demonstrate the validity and effectiveness of the proposed CIR target imaging framework, showing superiority in both imaging performance and system complexity compared with conventional algorithms used in interferometric radiometers.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Near Field Imaging of Synthetic Aperture Radiometer
    Zhang, C.
    Wu, J.
    Liu, H.
    Sun, W. Y.
    PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 1387 - 1391
  • [42] A MAP Approach With Huber-MRF for Synthetic Aperture Interferometric Radiometer
    Zhu, Ting
    Yang, Xiaocheng
    Yan, Jingye
    Wu, Lin
    Jiang, Mingfeng
    Wei, Bo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [43] Two dimensional least redundant array for interferometric synthetic aperture radiometer
    He, BY
    Wu, J
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 4371 - 4373
  • [45] Adaptive L p Reconstruction Method for Synthetic Aperture Interferometric Radiometer
    Yang, Xiaocheng
    Lu, Chaodong
    Yan, Jingye
    Wu, Lin
    Jiang, Mingfeng
    Li, Lin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3282 - 3291
  • [46] An Optimal Sparse Reconstruction Algorithm in Synthetic Aperture Interferometric Radiometer (SAIR)
    Zhao Z.
    Fu Z.
    Wang J.
    Gao Z.
    Gu J.
    Li S.
    Qi B.
    Jiang F.
    Progress In Electromagnetics Research M, 2023, 115 : 151 - 162
  • [47] An Optimal Sparse Reconstruction Algorithm in Synthetic Aperture Interferometric Radiometer (SAIR)
    Zhao, Zilong
    Fu, Zhongjian
    Wang, Jinguo
    Gao, Zhaozhao
    Gu, Jie
    Li, Shiwen
    Qi, Bo
    Jiang, Fan
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2023, 115 : 151 - 162
  • [48] A Near-Field Imaging Algorithm Based on Angular Spectrum Theory for Synthetic Aperture Interferometric Radiometer
    Fu, Peng
    Zhu, Dong
    Hu, Fei
    Xu, Yanyu
    Xia, Hui
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (07) : 3606 - 3616
  • [49] Synthetic Aperture Interferometric Imaging Using a Passive Microwave Coding Device
    Kpre, Ettien Lazare
    Decroze, Cyril
    2016 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2016,
  • [50] COMPRESSED SENSING FOR SYNTHETIC APERTURE RADAR IMAGING
    Patel, Vishal M.
    Easley, Glenn R.
    Healy, Dennis M., Jr.
    Chellappa, Rama
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2141 - 2144