Language-Augmented Pixel Embedding for Generalized Zero-Shot Learning

被引:11
|
作者
Wang, Ziyang [1 ,2 ]
Gou, Yunhao [1 ,2 ]
Li, Jingjing [2 ]
Zhu, Lei [3 ]
Shen, Heng Tao [3 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313002, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Visualization; Task analysis; Feature extraction; Image recognition; Annotations; Knowledge transfer; Zero-shot learning; transfer learning; attention mechanism;
D O I
10.1109/TCSVT.2022.3208256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zero-shot Learning (ZSL) aims to recognize novel classes through seen knowledge. The canonical approach to ZSL leverages a visual-to-semantic embedding to map the global features of an image sample to its semantic representation. These global features usually overlook the fine-grained information which is vital for knowledge transfer between seen and unseen classes, rendering these features sub-optimal for ZSL task, especially the more realistic Generalized Zero-shot Learning (GZSL) task where global features of similar classes could hardly be separated. To provide a remedy to this problem, we propose Language-Augmented Pixel Embedding (LAPE) that directly bridges the visual and semantic spaces in a pixel-based manner. To this end, we map the local features of each pixel to different attributes and then extract each semantic attribute from the corresponding pixel. However, the lack of pixel-level annotation conduces to an inefficient pixel-based knowledge transfer. To mitigate this dilemma, we adopt the text information of each attribute to augment the local features of image pixels which are related to the semantic attributes. Experiments on four ZSL benchmarks demonstrate that LAPE outperforms current state-of-the-art methods. Comprehensive ablation studies and analyses are provided to dissect what factors lead to this success.
引用
收藏
页码:1019 / 1030
页数:12
相关论文
共 50 条
  • [11] Semantic-guided Reinforced Region Embedding for Generalized Zero-Shot Learning
    Ge, Jiannan
    Xie, Hongtao
    Min, Shaobo
    Zhang, Yongdong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1406 - 1414
  • [12] Augmented semantic feature based generative network for generalized zero-shot learning
    Li, Zhiqun
    Chen, Qiong
    Liu, Qingfa
    NEURAL NETWORKS, 2021, 143 : 1 - 11
  • [13] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [14] Dual insurance for generalized zero-shot learning
    Liang, Jiahao
    Fang, Xiaozhao
    Kang, Peipei
    Han, Na
    Li, Chuang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (03) : 2111 - 2125
  • [15] Model Selection for Generalized Zero-Shot Learning
    Zhang, Hongguang
    Koniusz, Piotr
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 198 - 204
  • [16] Region interaction and attribute embedding for zero-shot learning
    Hu, Zhengwei
    Zhao, Haitao
    Peng, Jingchao
    Gu, Xiaojing
    INFORMATION SCIENCES, 2022, 609 : 984 - 995
  • [17] Semantics Disentangling for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Qiu, Ruihong
    Wang, Sen
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8692 - 8700
  • [18] Learning MLatent Representations for Generalized Zero-Shot Learning
    Ye, Yalan
    Pan, Tongjie
    Luo, Tonghoujun
    Li, Jingjing
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2252 - 2265
  • [19] Meta-Learning for Generalized Zero-Shot Learning
    Verma, Vinay Kumar
    Brahma, Dhanajit
    Rai, Piyush
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6062 - 6069
  • [20] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221