Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach

被引:17
|
作者
Das, Himanish Shekhar [1 ]
Das, Akalpita [2 ]
Neog, Anupal [3 ]
Mallik, Saurav [4 ,5 ,6 ]
Bora, Kangkana [1 ]
Zhao, Zhongming [4 ,7 ]
机构
[1] Cotton Univ, Dept Comp Sci & Informat Technol, Gauhati, India
[2] GIMT Guwahati, Dept Comp Sci & Engn, Gauhati, India
[3] IQVIA, Dept AI & Machine Learning COE, Bengaluru, Karnataka, India
[4] Univ Texas Hlth Sci Ctr Houston, Ctr Precis Hlth, Sch Biomed Informat, Houston, TX 77030 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, Boston, MA USA
[6] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ USA
[7] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Pathol & Lab Med, Houston, TX 77030 USA
关键词
breast cancer; medical imaging; deep learning; convolutional neural networks; transfer learning; CLASSIFICATION; MAMMOGRAMS; SYSTEM; MODEL;
D O I
10.3389/fgene.2022.1097207
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Of all the cancers that afflict women, breast cancer (BC) has the second-highest mortality rate, and it is also believed to be the primary cause of the high death rate. Breast cancer is the most common cancer that affects women globally. There are two types of breast tumors: benign (less harmful and unlikely to become breast cancer) and malignant (which are very dangerous and might result in aberrant cells that could result in cancer). Methods: To find breast abnormalities like masses and micro-calcifications, competent and educated radiologists often examine mammographic images. This study focuses on computer-aided diagnosis to help radiologists make more precise diagnoses of breast cancer. This study aims to compare and examine the performance of the proposed shallow convolutional neural network architecture having different specifications against pre-trained deep convolutional neural network architectures trained on mammography images. Mammogram images are pre-processed in this study's initial attempt to carry out the automatic identification of BC. Thereafter, three different types of shallow convolutional neural networks with representational differences are then fed with the resulting data. In the second method, transfer learning via fine-tuning is used to feed the same collection of images into pre-trained convolutional neural networks VGG19, ResNet50, MobileNet-v2, Inception-v3, Xception, and Inception-ResNet-v2. Results: In our experiment with two datasets, the accuracy for the CBIS-DDSM and INbreast datasets are 80.4%, 89.2%, and 87.8%, 95.1% respectively. Discussion: It can be concluded from the experimental findings that the deep network-based approach with precise tuning outperforms all other state-of-the-art techniques in experiments on both datasets.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Breast Cancer Detection Using Deep Convolutional Neural Network: A pre-processing-Driven Approach
    Hosseini, Golnaz
    Jalalian, Kimia
    Ghiasi, Razieh
    Bosaghzadeh, Alireza
    2023 30TH NATIONAL AND 8TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2023, : 150 - 157
  • [22] Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks
    Wang, Huai-Mu
    Lin, Huei-Yung
    Chang, Chin-Chen
    SENSORS, 2021, 21 (14)
  • [23] A Convolutional Neural Network Based Approach to QRS Detection
    Sarlija, Marko
    Jurisic, Fran
    Popovic, Sinisa
    PROCEEDINGS OF THE 10TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS, 2017, : 121 - 125
  • [24] Deep Convolutional Neural Network for Brain Tumor and Skin Cancer Detection Over Traditional Neural Networks
    Narayan, T. Ashish
    Anudeep, Ch
    Bodavarapu, Pavan Nageswar Reddy
    Srinivas, P. V. V. S.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 509 - 523
  • [25] Prostate Cancer Detection using Deep Convolutional Neural Networks
    Sunghwan Yoo
    Isha Gujrathi
    Masoom A. Haider
    Farzad Khalvati
    Scientific Reports, 9
  • [26] Prostate Cancer Detection using Deep Convolutional Neural Networks
    Yoo, Sunghwan
    Gujrathi, Isha
    Haider, Masoom A.
    Khalvati, Farzad
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [27] Breast Tumor Classification Based on Deep Convolutional Neural Networks
    Bakkouri, Ibtissam
    Afdel, Karim
    2017 3RD INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2017, : 49 - 54
  • [28] Convolutional neural networks for breast cancer detection in mammography: A survey
    Abdelrahman, Leila
    Al Ghamdi, Manal
    Collado-Mesa, Fernando
    Abdel-Mottaleb, Mohamed
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 131
  • [29] Convolutional neural networks for breast cancer detection in mammography: A survey
    Abdelrahman, Leila
    Al Ghamdi, Manal
    Collado-Mesa, Fernando
    Abdel-Mottaleb, Mohamed
    Computers in Biology and Medicine, 2021, 131
  • [30] Breast cancer detection using deep convolutional neural networks and support vector machines
    Ragab, Dina A.
    Sharkas, Maha
    Marshall, Stephen
    Ren, Jinchang
    PEERJ, 2019, 7